Page 119 - 201807
P. 119
2+
第 7 期 田 宇,等: 一步水热法制备 Sn 掺杂 TiO 2 及光催化产氢性能 ·1187·
2+
结构且具有较高的比表面积。Sn 掺杂 TiO 2 的吸收 and N co-doped TiO 2 [J]. Physical Chemistry Chemical Physics,
2+
边扩大到可见光区域,主要是 Sn 5s 轨道和 O 2p 2016, 18(14): 9636-9644.
轨道形成了杂质能级,使催化剂吸收带边红移,而 [12] Roy A, Arbuj S, Waghadkar Y, et al. Concurrent synthesis of
4+
Sn 掺杂 TiO 2 不具备降低禁带宽度的能力,因此不 SnO 4/SnO 2, nanocomposites and their enhanced photocatalytic
activity [J]. Journal of Solid State Electrochemistry, 2017, 21(1): 9-17.
能响应可见光。产氢性能测试结果表明,在全波段下
[13] Tangale N P, Niphadkar P S, Samuel V, et al. Synthesis of
4+
2+
Sn 掺杂样品下的产氢性能较 Sn 掺杂样品和 TiO 2 Sn-containing anatase (TiO 2) by sol-gel method and their
有所提高,当 n(Ti)/n(Sn) = 20 时,催化剂样品在全波 performance in catalytic water splitting under visible light as a
段和可见光下产氢速率达到最大值,分别为 50.3 和 function of tin content [J]. Materials Letters, 2016, 171: 50-54.
[14] Boppana V B B R, Jiao F, Laverock J, et al. Analysis of
33 μmol/(h·g)。而在可见光下对 Sn(Ⅱ)-TiO 2-20 样品
visible-light-active Sn( Ⅱ )-TiO 2 photocatalysts [J]. Physical
的产氢循环实验中:催化剂循环 5 次,持续反应 30 h
Chemistry Chemical Physics, 2013, 15(17): 6185-6189.
后仍保持良好的产氢性能,说明此法制备的催化剂 [15] Fan Z G, Meng F M, feng J, et al. One-step hydrothermal synthesis of
具有良好的稳定性。 mesoporous Ce-doped anatase TiO 2, nanoparticles with enhanced
photocatalytic activity [J]. Journal of Materials Science Materials in
参考文献: Electronics, 2016, 27(11): 11866-11872.
[16] Ali S M Y M M, Sandhya K Y. One step solvothermal synthesis of
[1] Chen X B, Shen S H, Guo L J, et al. Semiconductor-based
ultra-fine N-doped TiO 2 with enhanced visible light catalytic
photocatalytic hydrogen generation [J]. Chemical Reviews, 2010,
properties [J]. Rsc Advances, 2016, 6: 60522-60529.
110(11): 6503-6570.
[17] Su Y G, Zhu B L, Guan K, et al. Particle size and structural control of
[2] Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO 2
2+
ZnWO 4 nanocrystals via Sn doping for tunable optical and visible
photocatalysis: mechanisms and materials [J]. Chemical Reviews,
photocatalytic properties [J]. Journal of Physical Chemistry C, 2012,
2014, 114(19): 9919-9986.
116(34): 18508-18517.
[3] Nakamura R, Tanaka T, Nakato Y. Mechanism for visible light
[18] Lalitha K, Sadanandam G, Kumari V D, et al. Highly stabilized and
responses in anodic photocurrents at N-doped TiO 2 film electrodes
finely dispersed Cu 2O/TiO 2: A promising visible sensitive photocatalyst
[J]. Journal of Physical Chemistry B, 2004, 108(30): 10617-10620.
for continuous production of hydrogen from glycerol:Water mixtures
[4] Zhu M S, Zhai C Y, Qiu L Q, et al. New method to synthesize
[J]. Journal of Physical Chemistry C, 2010, 114(50): 22181-22189.
S-doped TiO 2 with stable and highly efficient photocatalytic
[19] Ghosh M, Pralong V, Wattiaux A, et al. Tin (II) doped anatase (TiO 2)
performance under indoor sunlight irradiation [J]. Acs Sustainable
nanoparticles: A potential route to “Greener” yellow pigments [J].
Chemistry & Engineering, 2015, 3(12): 3123-3129.
Chemistry-An Asian Journal, 2010, 4(6): 881-885.
[5] Yang K S, Dai Y, Huang B B. Understanding photocatalytic activity
[20] Long R, Dai Y, Huang B B. Geometric and electronic properties of
of S- and P-doped TiO 2 under visible light from First-Principles [J].
Sn-doped TiO 2 from First-Principles calculations [J]. Journal of
Journal of Physical Chemistry C, 2013, 111(51): 18985-18994.
Physical Chemistry C, 2009, 113(2): 650-653.
[6] Dong F, Guo S, Wang H Q, et al. Enhancement of the visible light
[21] Omata T, Kita M, Katada M. Characterization of novel
photocatalytic activity of C-doped TiO 2 nanomaterials prepared by a
cation-ordered compounds with fluorite and α-PbO 2 related
green synthetic approach [J]. Journal of Physical Chemistry C, 2011,
structures prepared by oxidation of Sn-Nb-O pyrochlore [J]. Journal
115(27): 13285-13292.
of Physics & Chemistry of Solids, 2005, 66(1): 53-62.
[7] Binas V D, Sambani K, Maggos T, et al. Synthesis and
[22] Fan C M, Peng Y, Zhu Q, et al. Synproportionation reaction for the
photocatalytic activity of Mn-doped TiO 2 nanostructured powders 2+
fabrication of Sn self-doped SnO 2-x nanocrystals with tunable band
under UV and visible light [J]. Applied Catalysis B Environmental,
structure and highly efficient visible light photocatalytic activity [J].
2012, 113/114(1): 79-86.
Journal of Physical Chemistry C, 2013, 117(46): 24157-24166.
[8] Klosek S, Raftery D. Visible light driven V-doped TiO 2 photocatalyst
[23] Zhuang H Q, Gu Q, Long J L, et al. Visible light-driven
and Its photooxidation of ethanol [J]. Journal of Physical Chemistry 2+
decomposition of gaseous benzene on robust Sn -doped anatase
B, 2001, 105 (14): 2815-2819. TiO 2 nanoparticles [J]. Rsc Advances, 2014, 4(65): 34315-34324.
[9] Zhu J, Ren J, Huo Y N, et al. Nanocrystalline Fe/TiO 2 visible [24] Boppana V B R, Lobo R F. Photocatalytic degradation of organic
photocatalyst with a mesoporous structure prepared via a molecules on mesoporous visible-light-active Sn (II)-doped titania
nonhydrolytic sol-gel route [J]. Journal of Physical Chemistry C, [J]. Journal of Catalysis, 2011, 281 (1): 156-168.
2007, 111(51): 18965-18969. [25] Wu Q H, Song J, Kang J Y, et al. Nano-particle thin films of tin
[10] Kong L, Wang C H, Zheng H, et al. Defect-induced yellow color in oxides [J]. Materials Letters, 2007, 61(17): 3679-3684.
Nb-doped TiO 2 and its impact on visible-light photocatalysis [J]. [26] Hosogi Y, Shimodaira Y, Kato Hw, et al. Role of Sn in the band
2+
Journal of Physical Chemistry C, 2015, 119(29): 16623-16632. structure of SnM 2O 6 and Sn 2M 2O 7 (M = Nb and Ta) and their
[11] Zhuang H Q, Zhang Y G, Chu Z W, et al. Synergy of metal and photocatalytic properties [J]. Chemistry of Materials, 2008, 20(4):
nonmetal dopants for visible-light photocatalysis: a case-study of Sn 1299-1307.