Page 97 - 201808
P. 97

第 8 期                      吕金昆,等:  纳米多孔钌催化纤维素高效转化制备甲烷                                   ·1345·


                 in dilute acid-catalyzed hydrolysis  of  cellulose [J]. Ind Eng Chem   [22] Sun  Jinyi  (孙锦宜). Deactivation  and regeneration of industrial
                 Res, 1992, 31(1): 94-100.                         catalysts [M]. Chemical Industry Press (化学工业出版社), 2006:
            [3]   Ishida M, Otsuka K, Takenaka S, et al. One-step production of CO-   223-261.
                 and CO 2-free hydrogen from biomass [J]. J Chem  Technol   [23]  Park K C, Tomiyasu H. Gasification reaction of organic compounds
                 Biotechnol, 2005, 80(3): 281-284.                 catalyzed by RuO 2 in supercritical water [J]. Chem Commun, 2003,
            [4]   Sasaki M, Fang Z, Fukushima Y, et al. Dissolution and hydrolysis of   (6): 694-695.
                 cellulose in subcritical and supercritical water [J]. Ind Eng Chem   [24]  Deng  W,  Wang Y, Zhang Q,  et al.  Development of bifunctional
                 Res, 2000, 39(8): 2883-2890.                      catalysts for the conversions of cellulose or cellobiose into polyols
            [5]   Xu H, Wang J, Tay J H. A hybrid anaerobic solid-liquid bioreactor for   and organic acids in water [J]. Catal Surv Asia, 2012, 16(2): 91-105.
                 food waste digestion [J]. Biotechnol Lett, 2002, 24 (10): 757-761.   [25]  Rinaldi R, Schüth F. Acid hydrolysis of cellulose as the entry point into
            [6]   Yu H W, Samani Z, Hanson A, et al. Energy recovery from grass using   biorefinery schemes [J]. ChemSusChem, 2009, 2(12): 1096-1107.
                 two-phase anaerobic digestion [J]. Waste Manage, 2002, 22(1): 1-5.   [26]  Cabiac A, Guillon E, Chambon F,  et al. Cellulose reactivity and
            [7]   Tippayawong N, Promwungkwa A,  Rerkkriangkrai P. Long-term   glycosidic bond cleavage in  aqueous phase by  catalytic and non
                 operation of a small biogas/diesel dual-fuel engine for on-farm   catalytic transformations [J]. Appl Catal, A, 2011, 402(1–2): 1-10.
                 electricity generation[J]. Biosyst Eng, 2007, 98(1): 26-32.   [27] Liu Zhigang(刘治刚), Gao Yan(高艳), Jin Hua(金华), et al. Study on
            [8]   Simell P A, Bredenberg J B s. Catalytic purification of tarry fuel gas   natural cellulose crystallinity determinated by the technology of
                 [J]. Fuel, 1990, 69(10): 1219-1225.               XRD peak separation [J]. China Measurement &  Test(中国测试),
            [9]   Natarajan E, Nordin A, Rao  A N. Overview of combustion and   2015, (02): 38-41.
                 gasification of rice husk in  fluidized bed reactors [J]. Biomass   [28]  Dhepe P  L, Fukuoka A. Cellulose conversion under heterogeneous
                 Bioenergy, 1998, 14(5): 533-546.                  catalysis [J]. ChemSusChem, 2008, 1(12): 969-975.
            [10]  Galletti C, Specchia S, Saracco G,  et al. CO-selective  methanation   [29]  Deng W, Zhang Q, Wang Y. Polyoxometalates as efficient catalysts
                 over Ru-γ-Al 2O 3 catalysts in H 2-rich gas for PEM FC applications   for transformations of cellulose into  platform  chemicals[J]. Dalton
                 [J]. Chem Eng Sci, 2010, 65(1): 590-596.          Trans, 2012, 41(33): 9817-9831.
            [11]  Seemann M C, Schildhauer T J, Biollaz S M A. Fluidized bed   [30]  Chamblee T S, Weikel R R, Nolen S A, et al. Reversible in situ acid
                 methanation of wood-derived producer gas for the production of   formation for β-pinene hydrolysis using CO 2 expanded liquid and hot
                 synthetic natural  gas [J]. Ind Eng Chem  Res, 2010, 49(15):   water [J]. Green Chem, 2004, 6(8): 382-386.
                 7034-7038.                                    [31]  Smith A J. Surface  and nanomolecular catalysis [M].  Taylor &
            [12]  van der Meijden C M, Veringa H J, Rabou L P L M. The production   Francis Group, 2006: 141-159.
                 of  synthetic natural  gas  (SNG): A comparison of three wood   [32]  Smith  A J, Trimm  D L. The preparation  of  skeletal catalysts*  [J].
                 gasification systems for energy balance  and overall efficiency[J].   Annu Rev Mater Res, 2005, 35(1): 127-142.
                 Biomass Bioenergy, 2010, 34(3): 302-311.      [33]  Grim S O, Matienzo L J. X-ray photoelectron  spectroscopy of
            [13]  Watanabe M, Inomata H, Arai K. Catalytic hydrogen generation from   inorganic and organometallic compounds of molybdenum [J]. Inorg
                 biomass (glucose and cellulose) with ZrO 2 in supercritical water [J].   Chem, 1975, 14 (5): 1014-1018.
                 Biomass Bioenergy, 2002, 22(5): 405-410.      [34]  Moulder J F,  Stickle W F, Sobol P  E,  et al. Handbook of X-ray
            [14]  Park K C, Tomiyasu H. Gasification reaction of organic compounds   photoelectron spectroscopy [M]. Physical Electronics, 1992: 74-75,
                 catalyzed by RuO 2 in supercritical water [J]. Chem Commun, 2003,   112-113, 172-175.
                 30(6): 694-695.                               [35]  Belatel H, Al-Kandari H, Al-Khorafi F, et al. Catalytic reactions of
            [15]  Osada M, Sato  T,  Watanabe M,  et al. Low-temperature  catalytic   methylcyclohexane (MCH) on partially reduced MoO 3 [J]. Appl
                 gasification of lignin and cellulose with a ruthenium catalyst in   Catal, A, 2004, 275(1–2): 141-147.
                 supercritical water [J]. Energ Fuel, 2004, 18(2): 327-333.   [36]  Wang W, Yang Y, Luo H, et al. Amorphous Co-Mo-B catalyst with
            [16]  Hao X, Guo L, Zhang X, et al. Hydrogen production from catalytic   high activity for the hydrodeoxygenation of bio-oil [J].  Catal
                 gasification of cellulose in supercritical water [J]. Chem Eng J, 2005,   Commun, 2011, 12(6): 436-440.
                 110(1–3): 57-65.                              [37]  Bian Yipeng ( 卞益 鹏 ). Preparation of Pt/WO 3 multifunctional
            [17]  Zhou C H, Xia  X, Lin C X,  et al. Catalytic conversion of   catalyst and study of glycerol hydrogenolysis [D]; Shanghai Normal
                 lignocellulosic biomass to fine chemicals and fuels [J]. Chem Soc   University (上海师范大学), 2016: 11-13.
                 Rev, 2011, 40(11): 5588-5617.                 [38]  Ma L,  Li Y, He D. Glycerol hydrogenolysis to propanediols over
            [18]  Huo Z, Liu J, Yao G,  et al. Efficient hydrothermal  conversion of   Ru-Re/SiO 2: acidity of catalyst and role of Re [J]. Chinese J Catal,
                 cellulose into methane over porous Ni catalyst [J]. Appl  Catal,  A,   2011, 32(5): 872-876.
                 2015, 490: 36-41.                             [39]  Liu Xuejun (刘学军), Gu Xiaodong (顾晓东), Shen Jianyi (沈俭一).
            [19]  Wittstock A, Zielasek V, Biener J, et al. Nanoporous gold catalysts   Structure, surface acidity/basicity and redox properties of V 2O 5/TiO 2
                 for  selective gas-phase oxidative coupling of methanol at low   catalysts[J]. Chinese Journal of Catalysis (催化学报), 2003, (9):
                 temperature [J]. Science, 2010, 327(5963): 319-322.   674-680.
            [20]  Wittstock A, Bäumer M. Catalysis by unsupported  skeletal gold   [40]  Vollhardt K P C, Schore N E. Organic chemistry structure and
                 catalysts [J]. Acc Chem Res, 2014, 47(3): 731-739.   function [M]. 6th ed. New York: Clancy Marshall, 2011: 333-337.
            [21]  Luo C, Wang S, Liu H. Cellulose conversion into polyols catalyzed   [41]  Di L,  Yao S, Li  M,  et al. Selective catalytic hydrogenolysis of
                 by reversibly formed acids and supported ruthenium clusters in hot   carbon–carbon σ bonds in primary aliphatic alcohols over supported
                 water [J]. Angew Chem Int Edit, 2007, 46(40): 7636-7639.   metals[J]. ACS Catal, 2015, 5(12): 7199-7207.
   92   93   94   95   96   97   98   99   100   101   102