Page 129 - 精细化工2019年第10期
P. 129
第 10 期 余 爵,等: 木质素/TiO 2 复合纳米颗粒的制备及其防晒应用 ·2095·
的 2 倍。研究表明,木质素改性强化 TiO 2 紫外防护 宏铭), et al. Effect of modified lignosulphonates on the properties of
性能的机理包括以下 3 方面:(1)木质素的表面化 Shenhua coal water slurries[J]. Fine Chemicals (精细化工), 2006,
学包覆使 TiO 2 颗粒表面粗糙度明显增加,提升了 23(3): 246-249.
[14] Ugartondo V, Mitjans M, Vinardell M P. Comparative antioxidant
TiO 2 对紫外线的散射和反射;(2)包覆在 TiO 2 表面
and cytotoxic effects of lignins from different sources[J]. Bioresour
的木质素是天然防晒剂,能有效地吸收紫外线;(3)
Technol, 2008, 99(14): 6683-6687.
3+
木质素与 TiO 2 发生氧化还原反应,形成的 Ti 缺陷 [15] Tortora M, Cavalieri F, Mosesso P, et al. Ultrasound driven assembly
和醌类木质素结构,能够进一步强化复合纳米颗粒 of lignin into microcapsules for storage and delivery of hydrophobic
的紫外吸收能力。木质素改性 TiO 2 复合纳米颗粒制 molecules[J]. Biomacromolecules, 2014, 15(5): 1634-1643.
备方法简单,原料绿色,具有理想的抗紫外性能, [16] Jiang S, Kai D, Dou Q Q, et al. Multi-arm carriers composed of an
在天然防晒护肤和材料的抗紫外老化领域具有广阔 antioxidant lignin core and poly (glycidyl methacrylate-co-poly
(ethylene glycol) methacrylate) derivative arms for highly efficient
的应用前景。
gene delivery[J]. J Mater Chem B, 2015, 3(34): 6897-6904.
参考文献: [17] Qian Y, Qiu X Q, Zhu S P. Lignin: A nature-inspired sun blocker for
broad-spectrum sunscreens[J]. Green Chem, 2014, 17(1): 320-324.
[1] Serpone N, Dondi D, Albini A. Inorganic and organic UV filters:
[18] Qian Y, Qiu X Q, Zhu S P. Sunscreen performance of lignin from
Their role and efficacy in sunscreens and suncare products[J]. Inorg
different technical resources and their general synergistic effect with
Chim Acta, 2007, 360(3): 794-802.
synthetic sunscreens[J]. ACS Sustain Chem Eng, 2016, 4(7): 4029-
[2] Dransfield G P. Inorganic sunscreens[J]. Radiation protection
4035.
dosimetry, 2000, 91(1/2/3): 271-273.
[19] Kai D, Chua Y K, Jiang L, et al. Dual functional anti-oxidant and
[3] Braun J H, Baidins A, Marganski R E. TiO 2 pigment technology: A
SPF enhancing lignin-based copolymers as additives for personal and
review[J]. Progress in Organic Coatings, 1992, 20(2): 105-138.
healthcare products[J]. RSC Adv, 2016, 6(89): 86420-86427.
[4] Lin Y L, Wang T J, Yong J. Surface characteristics of hydrous silica- [20] Qian Y, Zhong X W, Li Y, et al. Fabrication of uniform lignin
coated TiO 2 particles[J]. Powder Technol, 2002, 123(2/3): 194-198. colloidal spheres for developing natural broad-spectrum sunscreens
[5] Henderson M A. Structural sensitivity in the dissociation of water on
with high sun protection factor[J]. Ind Crop Prod, 2017, 101: 54-60.
TiO 2 single-crystal surfaces[J]. Langmuir, 1996, 12(21): 5093-5098. [21] Qiu X Q, Li Y, Qian Y, et al. Long-acting and safe sunscreens with
[6] Liu F, Feng N D, Wang Q, et al. Transfer channel of photoinduced ultrahigh sun protection factor via natural lignin encapsulation and
hole on TiO 2 surface as revealed by solid-state NMR and ESR synergy[J]. ACS Appl Bio Mater, 2018, 1(5): 1276-1285.
spectroscopy[J]. J Am Chem Soc, 2017, 139(29): 10020-10028. [22] Yu J, Li L, Qian Y, et al. Facile and green preparation of high
[7] Li Zongwei ( 李宗威 ), Zhu Yongfa ( 朱永法 ). Study on the UV-blocking lignin/titanium dioxide nanocomposites for developing
surface-modification of TiO 2 nanoparticles[J]. Acta Chimica Sinica natural sunscreens[J]. Ind Eng Chem Res, 2018, 57(46): 15740-
(化学学报), 2003, 61(9): 1484-1487. 15748.
[8] Mu S, Long Y, Kang S Z, et al. Surface modification of TiO 2 [23] Zhao Y L, Wang H T, Song X M, et al. Fabrication of two kinds of
nanoparticles with a C60 derivative and enhanced photocatalytic polymer microspheres stabilized by modified titania during pickering
activity for the reduction of aqueous Cr(Ⅵ) ions[J]. Catal Commun, emulsion polymerization[J]. Macromol Chem Phys, 2010, 211(23):
2010, 11(8): 741-744. 2517-2529.
[9] Guo H X, Lin K L, Zheng Z S, et al. Sulfanilic acid-modified P25 [24] Xie C, Xu Z L, Yang Q J, et al. Enhanced photocatalytic activity of
TiO 2 nanoparticles with improved photocatalytic degradation on titania-silica mixed oxide prepared via basic hydrolyzation[J]. Mater
Congo red under visible light[J]. Dyes Pigments, 2012, 92(3): 1278- Sci Eng B-Adv, 2004, 112(1): 34-41.
1284. [25] Umrao S, Abraham S, Theil F, et al. A possible mechanism for the
[10] Nsib M F, Maayoufi A, Moussa N, et al. TiO 2 modified by salicylic emergence of an additional band gap due to a Ti—O—C bond in the
acid as a photocatalyst for the degradation of monochlorobenzene via TiO 2-graphene hybrid system for enhanced photodegradation of
Pickering emulsion way[J]. J Photoch Photobio A, 2013, 251(9): methylene blue under visible light[J]. RSC Adv, 2014, 4(104):
10-17. 59890-59901.
[11] Ragauskas A J, Beckham G T, Biddy M J, et al. Lignin valorization: [26] Qiu X Q, Yu J, Yang D J, et al. Whitening sulfonated alkali lignin via
Improving lignin processing in the biorefinery[J]. Science, 2014, H 2O 2/UV radiation and its application as dye dispersant[J]. ACS
344(6185): 1246843. Sustain Chem Eng, 2017, 6(1): 1055-1060.
[12] Zhou Mingsong (周明松), Zhou Lili (周莉莉), Wu Silong (伍思龙), [27] Bährle C, Nick T U, Bennati M, et al. High-field electron
et al. Evaluation of high-performance grinding aid for cement paramagnetic resonance and density functional theory study of stable
prepared from oxidized alkali lignin[J]. Fine Chemicals (精细化工), organic radicals in lignin: Influence of the extraction process,
2011, 28(10): 1014-1018. botanical origin, and protonation reactions on the radical g tensor[J].
[13] Zhang Quncai (张群彩), Yang Dongjie(杨东杰), Lou Hongming(楼 J Phys Chem A, 2015, 119(24): 6475-6482.