Page 129 - 精细化工2019年第10期
P. 129

第 10 期                  余   爵,等:  木质素/TiO 2 复合纳米颗粒的制备及其防晒应用                             ·2095·


            的 2 倍。研究表明,木质素改性强化 TiO 2 紫外防护                          宏铭), et al. Effect of modified lignosulphonates on the properties of
            性能的机理包括以下 3 方面:(1)木质素的表面化                              Shenhua  coal  water  slurries[J].  Fine  Chemicals  (精细化工),  2006,
            学包覆使 TiO 2 颗粒表面粗糙度明显增加,提升了                             23(3): 246-249.
                                                               [14]  Ugartondo  V,  Mitjans  M,  Vinardell  M  P.  Comparative  antioxidant
            TiO 2 对紫外线的散射和反射;(2)包覆在 TiO 2 表面
                                                                   and cytotoxic effects of lignins from different sources[J]. Bioresour
            的木质素是天然防晒剂,能有效地吸收紫外线;(3)
                                                                   Technol, 2008, 99(14): 6683-6687.
                                                     3+
            木质素与 TiO 2 发生氧化还原反应,形成的 Ti 缺陷                      [15]  Tortora M, Cavalieri F, Mosesso P, et al. Ultrasound driven assembly
            和醌类木质素结构,能够进一步强化复合纳米颗粒                                 of lignin into microcapsules for storage and delivery of hydrophobic
            的紫外吸收能力。木质素改性 TiO 2 复合纳米颗粒制                            molecules[J]. Biomacromolecules, 2014, 15(5): 1634-1643.
            备方法简单,原料绿色,具有理想的抗紫外性能,                             [16]  Jiang S, Kai D, Dou Q Q, et al. Multi-arm carriers composed of an
            在天然防晒护肤和材料的抗紫外老化领域具有广阔                                 antioxidant  lignin  core  and  poly  (glycidyl  methacrylate-co-poly
                                                                   (ethylene  glycol)  methacrylate)  derivative  arms  for  highly  efficient
            的应用前景。
                                                                   gene delivery[J]. J Mater Chem B, 2015, 3(34): 6897-6904.
            参考文献:                                              [17]  Qian Y, Qiu X Q, Zhu S P. Lignin: A nature-inspired sun blocker for
                                                                   broad-spectrum sunscreens[J]. Green Chem, 2014, 17(1): 320-324.
            [1]   Serpone  N,  Dondi  D,  Albini  A.  Inorganic  and  organic  UV  filters:
                                                               [18]  Qian Y,  Qiu  X  Q,  Zhu  S P.  Sunscreen  performance  of  lignin from
                 Their role and efficacy in sunscreens and suncare products[J]. Inorg
                                                                   different technical resources and their general synergistic effect with
                 Chim Acta, 2007, 360(3): 794-802.
                                                                   synthetic sunscreens[J]. ACS Sustain Chem Eng, 2016, 4(7): 4029-
            [2]   Dransfield  G  P.  Inorganic  sunscreens[J].  Radiation  protection
                                                                   4035.
                 dosimetry, 2000, 91(1/2/3): 271-273.
                                                               [19]  Kai D, Chua Y K,  Jiang L, et al. Dual functional anti-oxidant and
            [3]   Braun J H, Baidins A, Marganski R E. TiO 2 pigment technology: A
                                                                   SPF enhancing lignin-based copolymers as additives for personal and
                 review[J]. Progress in Organic Coatings, 1992, 20(2): 105-138.
                                                                   healthcare products[J]. RSC Adv, 2016, 6(89): 86420-86427.
            [4]   Lin Y L, Wang T J, Yong J. Surface characteristics of hydrous silica-   [20]  Qian  Y,  Zhong  X  W,  Li  Y,  et al.  Fabrication  of  uniform  lignin
                 coated TiO 2 particles[J]. Powder Technol, 2002, 123(2/3): 194-198.     colloidal  spheres  for  developing  natural  broad-spectrum  sunscreens
            [5]   Henderson M A. Structural sensitivity in the dissociation of water on
                                                                   with high sun protection factor[J]. Ind Crop Prod, 2017, 101: 54-60.
                 TiO 2 single-crystal surfaces[J]. Langmuir, 1996, 12(21): 5093-5098.    [21]  Qiu X Q, Li Y, Qian Y, et al. Long-acting and safe sunscreens with
            [6]   Liu F, Feng N D, Wang Q, et al. Transfer channel of photoinduced   ultrahigh  sun  protection  factor  via  natural  lignin  encapsulation  and
                 hole  on  TiO 2 surface as  revealed by  solid-state NMR and  ESR   synergy[J]. ACS Appl Bio Mater, 2018, 1(5): 1276-1285.
                 spectroscopy[J]. J Am Chem Soc, 2017, 139(29): 10020-10028.     [22]  Yu  J,  Li  L,  Qian  Y,  et al.  Facile  and  green  preparation  of  high
            [7]   Li  Zongwei  ( 李宗威 ),  Zhu  Yongfa  ( 朱永法 ).  Study  on  the   UV-blocking lignin/titanium dioxide nanocomposites for developing
                 surface-modification  of  TiO 2  nanoparticles[J].  Acta  Chimica  Sinica   natural  sunscreens[J].  Ind  Eng  Chem  Res,  2018,  57(46):  15740-
                 (化学学报), 2003, 61(9): 1484-1487.                   15748.
            [8]   Mu  S,  Long  Y,  Kang  S  Z,  et al.  Surface  modification  of  TiO 2   [23]  Zhao Y L, Wang H T, Song X M, et al. Fabrication of two kinds of
                 nanoparticles  with  a  C60  derivative  and  enhanced  photocatalytic   polymer microspheres stabilized by modified titania during pickering
                 activity for the reduction of aqueous Cr(Ⅵ) ions[J]. Catal Commun,   emulsion  polymerization[J].  Macromol  Chem  Phys,  2010,  211(23):
                 2010, 11(8): 741-744.                             2517-2529.
            [9]   Guo H X, Lin K L, Zheng Z S, et al. Sulfanilic acid-modified P25   [24]  Xie C, Xu Z L, Yang Q J, et al. Enhanced photocatalytic activity of
                 TiO 2  nanoparticles  with  improved  photocatalytic  degradation  on   titania-silica mixed oxide prepared via basic hydrolyzation[J]. Mater
                 Congo red under visible light[J]. Dyes Pigments, 2012, 92(3): 1278-   Sci Eng B-Adv, 2004, 112(1): 34-41.
                 1284.                                         [25]  Umrao S, Abraham S, Theil F, et al. A possible mechanism for the
            [10]  Nsib M F, Maayoufi A, Moussa N, et al. TiO 2 modified by salicylic   emergence of an additional band gap due to a Ti—O—C bond in the
                 acid as a photocatalyst for the degradation of monochlorobenzene via   TiO 2-graphene  hybrid  system  for  enhanced  photodegradation  of
                 Pickering  emulsion  way[J].  J  Photoch  Photobio  A,  2013,  251(9):   methylene  blue  under  visible  light[J].  RSC  Adv,  2014,  4(104):
                 10-17.                                            59890-59901.
            [11]  Ragauskas A J, Beckham G T, Biddy M J, et al. Lignin valorization:   [26]  Qiu X Q, Yu J, Yang D J, et al. Whitening sulfonated alkali lignin via
                 Improving  lignin  processing  in  the  biorefinery[J].  Science,  2014,   H 2O 2/UV  radiation  and  its  application  as  dye  dispersant[J].  ACS
                 344(6185): 1246843.                               Sustain Chem Eng, 2017, 6(1): 1055-1060.
            [12]  Zhou Mingsong (周明松), Zhou Lili (周莉莉), Wu Silong (伍思龙),   [27]  Bährle  C,  Nick  T  U,  Bennati  M,  et al.  High-field  electron
                 et al.  Evaluation  of  high-performance  grinding  aid  for  cement   paramagnetic resonance and density functional theory study of stable
                 prepared from oxidized alkali lignin[J]. Fine Chemicals (精细化工),   organic  radicals  in  lignin:  Influence  of  the  extraction  process,
                 2011, 28(10): 1014-1018.                          botanical origin, and protonation reactions on the radical g tensor[J].
            [13]  Zhang Quncai (张群彩), Yang Dongjie(杨东杰), Lou Hongming(楼  J Phys Chem A, 2015, 119(24): 6475-6482.
   124   125   126   127   128   129   130   131   132   133   134