Page 94 - 《精细化工》2019年第11期
P. 94

·2242·                            精细化工   FINE CHEMICALS                                  第 36 卷

                 由表 5 可知, Ni-B/TiO 2 -ZrO 2 ( sol-gel )与       [6]   Chen Xiaopeng (陈小鹏), Wang Linlin (王琳琳). Study on catalytic
                                                                   hydrogenation of rosin on Raney nickel[J]. Chemical and Industry of
            Ni-B/TiO 2 -ZrO 2 (沉淀法)相比具有较强的催化性能,                    Forest Products (林产化学与工业), 2002, 22(1): 12-16.
            说明溶胶-凝胶法制备的载体较沉淀法制得的更适                             [7]   Chen Xiaopeng (陈小鹏), Wang Linlin (王琳琳), Yang Chengli (阳
                                                                   承利), et al. Intrinsic kinetics of catalytic hydrogenation of rosin on
            合作为催化剂载体,在松香加氢反应中表现出较高                                 Raney nickel[J]. Journal of Chemical Industry and Engineering (化工
                                                                   学报), 2002, 53(5): 522-527.
            的活性及选择性;而 Ag/TiO 2 -ZrO 2 的催化活性较弱,                 [8]   Jiang Lihong (蒋丽红), Wang Yaming (王亚明), Yi Haibo (易海波).
                                                                   Study  on  catalytic  activity  and  product  component  of  gum  rosin
            说明金属诱导前体 Ag/TiO 2 -ZrO 2 并不具有较强的加
                                                                   hydrogenation  reaction  catalyzed  by  Ni/Al 2O 3-M xO y  catalyst[J].
            氢催化活性,起到高催化活性的是 Ni-B 组分。可能                             Science  &  Technology  in  Chemical  Industry  (化工科技),  2008,
                                                                   16(6): 13-16.
            是由于 TiO 2 -ZrO 2 (sol-gel)具有非晶态独特的结构,              [9]   Lv  Z  G,  Song  Z  Q,  Guo  Z  M,  et al.  Catalytical  performance  of
            有利于对活性组分 Ni-B 的吸附,而且 Ni-B 之间的                          supported nano-amorphous alloy NiB/MCM-41 on hydrogenation of
                                                                   rosin[J]. Chemistry & Industry of Forest Products, 2008, 28(3): 1-6.
            电子效应有利于松香加氢反应的进行。                                  [10]  Guo J, Hou Y, Yang C, et al. Preparation of Ni-B amorphous alloy
                                                                   catalyst from nickel hydrazine complex with ultrasonic assistance[J].
                 由表 5 还可知,Ni-B/TiO 2 -ZrO 2 复合催化剂之                 Catalysis Communications, 2011, 16(1): 86-89.
            所以比其他催化剂表现出较高的活性是因为非晶态                             [11]  Islam S, Bidin N, Riaz S, et al. Mesoporous SiO 2-TiO 2 nanocomposite
                                                                   for pH sensing[J]. Sens Actuators B,2015, 221: 993-1002.
            催化剂自身独特的结构有利于对反应物的吸附,                              [12]  Manoharan  K,  Joby  N  G,  Venkatachalam  P.  A  novel  TiO 2
                                                                   nanoparticles/nanowires  composite  core  with  ZrO 2  nanoparticles
            Ni-B 之间的电子效应有利于松香加氢反应的进行,                              shell coating photoanode for high-performance dye-sensitized solar
            此外,复合载体 TiO 2 -ZrO 2 的引入,联合化学镀法                        cell based on different electrolytes[J]. Ionics, 2014, 20: 887-896.
                                                               [13]  Qin G, Wang X, Wang X, et al. Mesoporous TiO 2-ZrO 2 composite
            能够形成包覆膜,有效地分散 Ni-B 纳米粒子,有利                             film  electrode  for  electrocatalytic  reduction  2-pyridinaldehyde in
                                                                   ionic liquid[J]. Composite Interfaces, 2017, 24(3): 267-277.
            于加氢反应的进行。                                          [14]  Li M, Li X, Jiang G, et al. Hierarchically macro-mesoporous ZrO 2-
                                                                   TiO 2 composites with enhanced photocatalytic activity[J]. Ceramics
                                                                   International, 2015, 41(4): 5749-5757.
            3   结论                                             [15]  Liu  Suwen  ( 刘素文 ).  Preparation  of  TiO 2-ZrO 2  system
                                                                   nanophotocatalytic  materials  and  study  on  degradation  of  organic
                ( 1 )采用溶胶 - 凝胶法制备复合纳米载体                            pollutants[D]. Jinan: Shandong University (山东大学), 2004.
                                                               [16]  Han Chenghui (韩承辉), Liu Binghua (刘炳华), Zhang Huiliang (张
            TiO 2 -ZrO 2 ,在 Ti、Zr 的相互作用下,随着 Zr 加入                  惠良), et al. Characterization of TiO 2-ZrO 2 and isopropanol catalytic
                                                                   conversion  [J].  Acta  Physico-Chimica  Sinica  (物理学报),  2006,
            量增加 TiO 2 -ZrO 2 由晶态逐渐转变为非晶态,说明                        22(8): 993-998.
            Zr 的掺杂有效抑制了 TiO 2 的晶粒长大,形成了具有                      [17]  Lu Yinhua (卢银花), Zhang Minghui (张明慧), Li Wei (李伟), et al.
                                                                   Novel  catalyst  for  hydrogenation  of  sulfolene.  Ⅱ   recycle  of
            均匀蜂窝状结构的纳米载体。                                          chemical  plating  bath  and  recovery  of  catalyst[J].  Petrochemical
                                                                   Technology (石油化工), 2005, 34(7): 681-683.
                (2)金属诱导化学镀法制备负载型 Ni-B/TiO 2 -                  [18]  Wang J, Yu Y, Li S, et al. Doping behavior of Zr ions in Zr doped
                                                                                                 4+
                                                                                                        4+
            ZrO 2 ,活性组分 Ni、B 以非晶态形式均匀包覆在复                          TiO 2  nanoparticles[J].  Journal  of  Physical  Chemistry  C,  2013,
                                                                   117(51): 27120-27126.
            合载体 TiO 2 -ZrO 2 上,催化剂表面活性中心极大增                    [19]  Li Z R, Zhang X Y, Wang X G, et al. Local structure and catalytic
                                                                   performance of ultrafine Ni-B amorphous alloy [J]. Journal of China
            加,在松香加氢反应中表现出较高的催化活性,枞                                 University of Science and Technology, 2001, 31(3): 302-309.
            酸型树脂酸加氢转化率可达 99.56%,且使用寿命高                         [20]  Hui  L,  Li  H,  Dai  W  L,  et al.  Influence  of  calcination  and
                                                                   pretreatment  temperature  on  the  activity  of  Ni-B/SiO 2,  amorphous
            达 7 次,可能由于形成的包覆膜具有较稳定的结构,                              catalyst  in  acrylonitrile  hydrogenation[J].  Applied  Catalysis  A
                                                                   General, 2001, 207(1): 151-157.
            活性组分流失较慢。                                          [21]  Zhang Jiahua (张家华), Jiang Lihong (蒋丽红), Wu Shuisheng (伍水
                                                                   生), et al. Preparation of amorphous Ni-B/graphene composites for
                (3)下一步研究将加入第三组分,如 Co、Mo、                           catalytic  hydrogenation  of  pinene[J].  Journal  of  Chemical  Industry
            Ce 等可与 Ni 形成协同作用,进一步提高加氢转化                             and Engineering (化学工程), 2016, 67(6): 2363-2370.
                                                               [22]  Parks  G  L,  Pease  M  L,  Burns  A  W,  et al.  Characterization  and
            率以及催化剂的热稳定性。                                           hydrodesulfurization properties of catalysts derived from amorphous
                                                                   metal-boron materials[J]. Journal of Catalysis, 2007, 246(2): 277-292.
            参考文献:                                              [23]  Chen Y Z, Liaw B J, Chiang S J. Selective hydrogenation of citral
                                                                   over amorphous NiB and CoB nano-catalysts[J]. Applied Catalysis
            [1]   Ren Tianrui (任天瑞), Li Yonghong (李永红). Rosin chemistry and   A: General, 2005, 284(1/2): 97-104.
                 its application[M]. Beijing: Chemical Industry Press (化学工业出版  [24]  Lu Xianfu (吕先富), Yu Shitao (于世涛), Li Lu (李露), et al. Study
                 社), 2006: 178-190.                                on hydrogenation of rosin catalyzed by mesoporous molecular sieve
            [2]   He Jinke (贺近恪), Li  Qiji (李启基). The forest chemical industry   MCM-41  loaded  with  nanometer  Pd[J].  Chemical  and  Industry  of
                 book, Volume 2 [M]. Beijing: China Forestry Publishing House (中  Forest Products (林产化学与工业), 2007, 27(6): 51-55.
                 国林业出版社), 2001: 3-9.                           [25]  Gao Haichun (高海春), Yu Shitao (于世涛), Li Lu (李露), et al. A
            [3]   Savinykh  V  I,  Kushnir  S  R,  Radbil  B  A.  Improvement  of  the   study on hydrogenation of rosin catalyzed with Pd/C in supercritical
                 hydrogenation  technology  of  colophony[J].  Gidroliz  Lesokhim   CO 2[J].  Biomass  Chemical  Engineering  (生物质化学工程),  2006,
                 Promst, 1992, 3: 19-20.                           40(3): 13-16.
            [4]   Duan  Wengui  (段文贵),  Chen  Xiaopeng  (陈小鹏).  Progress  in   [26]  Huang Li (黄莉), Xie Hui (谢晖), Lu Dongyan (陆冬燕), et al. Study
                 catalytic hydrogenation of rosin[J]. Modern Chemical Industry (现代  on  hydrogenation  of  rosin  based  on  nano-Ni  catalystⅡ.  study  on
                 化工), 2002, 22(5): 10-13.                          hydrogenation  [J].  Natural  Gas  Chemical  Industry  (天然气化工),
            [5]   Li Qian (李前), Wei Xiaojie (韦小杰), Chen Xiaopeng (陈小鹏), et   2007, 32(6): 8-10.
                 al.  Intrinsic  kinetics  of  catalytic  hydrogenation  of  rosin  to   [27]  Chen Xiaopeng (陈小鹏), Wang Linlin (王琳琳), Ma Jian (马建), et
                 abietenoic-acid  and  abietanoec-acid  on  Raney  nickel[J].  Journal of   al.  Study  on  hydrogenated  rosin  preparation  catalyzed  by  Raney
                 Chemical  Industry  and  Engineering  (化工学报),  2010,  61(10):   nickel[J]. Biomass Chemical Engineering (生物质化学工程), 2001,
                 2573-2578.                                        35(6): 7-10.
   89   90   91   92   93   94   95   96   97   98   99