Page 94 - 《精细化工》2019年第11期
P. 94
·2242· 精细化工 FINE CHEMICALS 第 36 卷
由表 5 可知, Ni-B/TiO 2 -ZrO 2 ( sol-gel )与 [6] Chen Xiaopeng (陈小鹏), Wang Linlin (王琳琳). Study on catalytic
hydrogenation of rosin on Raney nickel[J]. Chemical and Industry of
Ni-B/TiO 2 -ZrO 2 (沉淀法)相比具有较强的催化性能, Forest Products (林产化学与工业), 2002, 22(1): 12-16.
说明溶胶-凝胶法制备的载体较沉淀法制得的更适 [7] Chen Xiaopeng (陈小鹏), Wang Linlin (王琳琳), Yang Chengli (阳
承利), et al. Intrinsic kinetics of catalytic hydrogenation of rosin on
合作为催化剂载体,在松香加氢反应中表现出较高 Raney nickel[J]. Journal of Chemical Industry and Engineering (化工
学报), 2002, 53(5): 522-527.
的活性及选择性;而 Ag/TiO 2 -ZrO 2 的催化活性较弱, [8] Jiang Lihong (蒋丽红), Wang Yaming (王亚明), Yi Haibo (易海波).
Study on catalytic activity and product component of gum rosin
说明金属诱导前体 Ag/TiO 2 -ZrO 2 并不具有较强的加
hydrogenation reaction catalyzed by Ni/Al 2O 3-M xO y catalyst[J].
氢催化活性,起到高催化活性的是 Ni-B 组分。可能 Science & Technology in Chemical Industry (化工科技), 2008,
16(6): 13-16.
是由于 TiO 2 -ZrO 2 (sol-gel)具有非晶态独特的结构, [9] Lv Z G, Song Z Q, Guo Z M, et al. Catalytical performance of
有利于对活性组分 Ni-B 的吸附,而且 Ni-B 之间的 supported nano-amorphous alloy NiB/MCM-41 on hydrogenation of
rosin[J]. Chemistry & Industry of Forest Products, 2008, 28(3): 1-6.
电子效应有利于松香加氢反应的进行。 [10] Guo J, Hou Y, Yang C, et al. Preparation of Ni-B amorphous alloy
catalyst from nickel hydrazine complex with ultrasonic assistance[J].
由表 5 还可知,Ni-B/TiO 2 -ZrO 2 复合催化剂之 Catalysis Communications, 2011, 16(1): 86-89.
所以比其他催化剂表现出较高的活性是因为非晶态 [11] Islam S, Bidin N, Riaz S, et al. Mesoporous SiO 2-TiO 2 nanocomposite
for pH sensing[J]. Sens Actuators B,2015, 221: 993-1002.
催化剂自身独特的结构有利于对反应物的吸附, [12] Manoharan K, Joby N G, Venkatachalam P. A novel TiO 2
nanoparticles/nanowires composite core with ZrO 2 nanoparticles
Ni-B 之间的电子效应有利于松香加氢反应的进行, shell coating photoanode for high-performance dye-sensitized solar
此外,复合载体 TiO 2 -ZrO 2 的引入,联合化学镀法 cell based on different electrolytes[J]. Ionics, 2014, 20: 887-896.
[13] Qin G, Wang X, Wang X, et al. Mesoporous TiO 2-ZrO 2 composite
能够形成包覆膜,有效地分散 Ni-B 纳米粒子,有利 film electrode for electrocatalytic reduction 2-pyridinaldehyde in
ionic liquid[J]. Composite Interfaces, 2017, 24(3): 267-277.
于加氢反应的进行。 [14] Li M, Li X, Jiang G, et al. Hierarchically macro-mesoporous ZrO 2-
TiO 2 composites with enhanced photocatalytic activity[J]. Ceramics
International, 2015, 41(4): 5749-5757.
3 结论 [15] Liu Suwen ( 刘素文 ). Preparation of TiO 2-ZrO 2 system
nanophotocatalytic materials and study on degradation of organic
( 1 )采用溶胶 - 凝胶法制备复合纳米载体 pollutants[D]. Jinan: Shandong University (山东大学), 2004.
[16] Han Chenghui (韩承辉), Liu Binghua (刘炳华), Zhang Huiliang (张
TiO 2 -ZrO 2 ,在 Ti、Zr 的相互作用下,随着 Zr 加入 惠良), et al. Characterization of TiO 2-ZrO 2 and isopropanol catalytic
conversion [J]. Acta Physico-Chimica Sinica (物理学报), 2006,
量增加 TiO 2 -ZrO 2 由晶态逐渐转变为非晶态,说明 22(8): 993-998.
Zr 的掺杂有效抑制了 TiO 2 的晶粒长大,形成了具有 [17] Lu Yinhua (卢银花), Zhang Minghui (张明慧), Li Wei (李伟), et al.
Novel catalyst for hydrogenation of sulfolene. Ⅱ recycle of
均匀蜂窝状结构的纳米载体。 chemical plating bath and recovery of catalyst[J]. Petrochemical
Technology (石油化工), 2005, 34(7): 681-683.
(2)金属诱导化学镀法制备负载型 Ni-B/TiO 2 - [18] Wang J, Yu Y, Li S, et al. Doping behavior of Zr ions in Zr doped
4+
4+
ZrO 2 ,活性组分 Ni、B 以非晶态形式均匀包覆在复 TiO 2 nanoparticles[J]. Journal of Physical Chemistry C, 2013,
117(51): 27120-27126.
合载体 TiO 2 -ZrO 2 上,催化剂表面活性中心极大增 [19] Li Z R, Zhang X Y, Wang X G, et al. Local structure and catalytic
performance of ultrafine Ni-B amorphous alloy [J]. Journal of China
加,在松香加氢反应中表现出较高的催化活性,枞 University of Science and Technology, 2001, 31(3): 302-309.
酸型树脂酸加氢转化率可达 99.56%,且使用寿命高 [20] Hui L, Li H, Dai W L, et al. Influence of calcination and
pretreatment temperature on the activity of Ni-B/SiO 2, amorphous
达 7 次,可能由于形成的包覆膜具有较稳定的结构, catalyst in acrylonitrile hydrogenation[J]. Applied Catalysis A
General, 2001, 207(1): 151-157.
活性组分流失较慢。 [21] Zhang Jiahua (张家华), Jiang Lihong (蒋丽红), Wu Shuisheng (伍水
生), et al. Preparation of amorphous Ni-B/graphene composites for
(3)下一步研究将加入第三组分,如 Co、Mo、 catalytic hydrogenation of pinene[J]. Journal of Chemical Industry
Ce 等可与 Ni 形成协同作用,进一步提高加氢转化 and Engineering (化学工程), 2016, 67(6): 2363-2370.
[22] Parks G L, Pease M L, Burns A W, et al. Characterization and
率以及催化剂的热稳定性。 hydrodesulfurization properties of catalysts derived from amorphous
metal-boron materials[J]. Journal of Catalysis, 2007, 246(2): 277-292.
参考文献: [23] Chen Y Z, Liaw B J, Chiang S J. Selective hydrogenation of citral
over amorphous NiB and CoB nano-catalysts[J]. Applied Catalysis
[1] Ren Tianrui (任天瑞), Li Yonghong (李永红). Rosin chemistry and A: General, 2005, 284(1/2): 97-104.
its application[M]. Beijing: Chemical Industry Press (化学工业出版 [24] Lu Xianfu (吕先富), Yu Shitao (于世涛), Li Lu (李露), et al. Study
社), 2006: 178-190. on hydrogenation of rosin catalyzed by mesoporous molecular sieve
[2] He Jinke (贺近恪), Li Qiji (李启基). The forest chemical industry MCM-41 loaded with nanometer Pd[J]. Chemical and Industry of
book, Volume 2 [M]. Beijing: China Forestry Publishing House (中 Forest Products (林产化学与工业), 2007, 27(6): 51-55.
国林业出版社), 2001: 3-9. [25] Gao Haichun (高海春), Yu Shitao (于世涛), Li Lu (李露), et al. A
[3] Savinykh V I, Kushnir S R, Radbil B A. Improvement of the study on hydrogenation of rosin catalyzed with Pd/C in supercritical
hydrogenation technology of colophony[J]. Gidroliz Lesokhim CO 2[J]. Biomass Chemical Engineering (生物质化学工程), 2006,
Promst, 1992, 3: 19-20. 40(3): 13-16.
[4] Duan Wengui (段文贵), Chen Xiaopeng (陈小鹏). Progress in [26] Huang Li (黄莉), Xie Hui (谢晖), Lu Dongyan (陆冬燕), et al. Study
catalytic hydrogenation of rosin[J]. Modern Chemical Industry (现代 on hydrogenation of rosin based on nano-Ni catalystⅡ. study on
化工), 2002, 22(5): 10-13. hydrogenation [J]. Natural Gas Chemical Industry (天然气化工),
[5] Li Qian (李前), Wei Xiaojie (韦小杰), Chen Xiaopeng (陈小鹏), et 2007, 32(6): 8-10.
al. Intrinsic kinetics of catalytic hydrogenation of rosin to [27] Chen Xiaopeng (陈小鹏), Wang Linlin (王琳琳), Ma Jian (马建), et
abietenoic-acid and abietanoec-acid on Raney nickel[J]. Journal of al. Study on hydrogenated rosin preparation catalyzed by Raney
Chemical Industry and Engineering (化工学报), 2010, 61(10): nickel[J]. Biomass Chemical Engineering (生物质化学工程), 2001,
2573-2578. 35(6): 7-10.