Page 147 - 精细化工2019年第12期
P. 147

第 12 期               徐雅琴,等:  乙酰化修饰对黑穗醋栗果实多糖结构特性及活性的影响                                   ·2475·


                 International  Journal  of  Biological  Macromolecules,  2017,  105:   [27]  Niknezhadn  S  V,  Najafpour-Darzi  G,  Morowvat  M  H,  et al.
                 1062-1070.                                        Eexopolysaccharide  production  of  Pantoea sp.  BCCS  001  GH:
            [18]  Xu Y Q, Guo Y Y, Gao Y K, et al. Seperation, characterization and   Physical characterizations, emulsification, and antioxidant activities[J].
                 inhibition  on  α-glucosidase,  α-amylase  and  glycation  of  a   International Journal of Biological Macromolecules, 2018, 118(Part
                 polysaccharide  from  blackcurrant  fruits[J].  LWT-Food  Science  and   A): 1103-1111.
                 Technology, 2018, 93: 16-23.                  [28]  Liu  Qingye  (刘青业),  Xu  Xiaojuan  (许小娟).  Recent  progress  in
            [19]  Song Y, Yang Y, Zhang Y Y, et al. Effect of acetylation on antioxidant   chain conformation and function of triple helical polysaccharides[J].
                 and cytoprotective activity of polysaccharides isolated from pumpkin   Journal  of  Founctional  Polymers  (功能高分子学报),  2016,  29(2):
                 (Cucurbita pepo,  lady  godiva)[J].  Carbohydrate  Polymers,  2013,   134-152.
                 98(1): 686-691.                               [29]  Zhang Z, Wang X, Zhao M, et al. O-acetylation of low-molecular-
            [20]  Pan  Xinxin  (潘欣欣),  Jiang  Shu  (江曙),  Zhu  Yue  (朱悦),  et al.   weight  polysaccharide  from  Enteromorpha linza  with  antioxidant
                 Acetylated modification of polysaccharides from stemsand leaves of   activity[J].  International  Journal  of  Biological  Macromolecules,
                 Abelmoschus Manihot and its immunoregulatory activity[J]. Journal   2014, 69: 39-45.
                 of Nanjing University of Traditional Chinese Medicine (南京中医药  [30]  Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants
                 大学学报), 2017, 33(2): 167-172.                      in  normal  physiological  functions  and  human  disease[J].  The
            [21]  Xie  J  H,  Wang  Z  J,  Shen  M  Y,  et al.  Sulfated  modification,   International  Journal  of  Biochemistry  &  Cell  Biology,  2007,  39:
                 characterization  and  antioxidant  activities  of  polysaccharide  from   44-84.
                 Cyclocarya paliurus[J]. Food Hydrocolloids, 2016, 53: 7-15.     [31]  Shameem  N,  Kamili  A  N,  Ahmad  M,  et al.  Radical  scavenging
            [22]  Ren B,  Chen C,  Li C,  et al.  Optimization  of  microwave-assisted   potential and DNA damage protection of wild edible mushrooms of
                 extraction  of  Sargassum thunbergii  polysaccharides  and  its   Kashmir  Himalaya[J].  Journal  of  the  Saudi  Society  of  Agricultural
                 antioxidant and hypoglycemic activities[J]. Carbohydrate Polymers,   Sciences, 2015, 16(4): 1-8.
                 2017, 173: 192-201.                           [32]  Sun L, Chen W, Meng Y, et al. Interactions between polyphenols in
            [23]  Wang  Z  B, Pei J J,  Ma H  L,  et al.  Effect  of  extraction  media  on   thinned young apples and porcine pancreatic α-amylase: Inhibition,
                 preliminary characterizations and antioxidant activities of Phellinus   detailed  kinetics  and  fluorescence  quenching[J].  Food  Chemistry,
                 linteus polysaccharides[J]. Carbohydrate Polymers, 2014, 109: 49-55.     2016, 208: 51-60.
            [24]  Sahragard N, Jahanbin K. Structural elucidation of the main water-   [33]  Qian  J  Y,  Bai  Y  Y,  Tang  J,  et al.  Antioxidation  and  α-glucosidase
                 soluble polysaccharide from Rubus anatolicus roots[J]. Carbohydrate   inhibitory  activities  of  barley  polysaccharides  modified  with
                 Polymers, 2017, 175: 610-617.                     sulfation[J]. LWT-Food Science and Technology, 2015, 64(1): 104-
            [25]  Wang  Q,  Sun  Y,  Yang  B,  et al.  Optimization  of  polysaccharides   111.
                 extraction from seeds of Pharbitis nil and its anti-oxidant activity[J].   [34]  Zhao Xiaoxiao (赵笑笑), Zhang Huiru (张慧茹), Meng Suxiang (孟
                 Carbohydrate Polymers, 2014, 102: 460-466.        素香 ),  et al.  The  inhibiting  effects  of  the  endophytic  fungi
            [26]  Wang  Jing  (王警),  Wu  Nini  (吴妮妮),  Huang  Jing  (黄静),  et al.   polysaccharide of gynostemma on α-glycosidase[J]. Food Science (食
                 Optimization  of  preparation  of  acetylated  polysaccharides  from   品科学), 2016, 37(17): 70-75.
                 Longan (Dimocarpus longan) Pulp by response surface methodology   [35]  Wang  L,  Zhang  B,  Xiao  J,  et al.  Physicochemical,  functional,  and
                 and  its  antioxidant  ability[J].  Food  Science  (食品科学),  2016,   biological  properties  of  water-soluble  polysaccharides  from  Rosa
                 37(16): 63-68.                                    roxburghii Tratt fruit[J]. Food Chemistry, 2018, 249: 127-135.


            (上接第 2451 页)                                       [9]   Ruan Wanmin (阮万民), Wang Jianli (王建黎). Progress in supported
                                                                   TEMPO catalysts[J]. Industrial Catalysis (工业催化), 2015, 23(12):
            参考文献:                                                  961- 965.
                                                               [10]  Karimi B, Rafiee M, Alizadeh S, et al. Eco-friendly electrocatalytic
            [1]   Tojo  G,  Fernández  M  I.  Oxidation  of  alcohols  to  aldehydes  and   oxidation  ofalcohols  on  a  novel  electro  generated  TEMPO-
                 ketones: a guide to current common practice[M]. New York: Springer   functionalized  MCM-41  modified  electrode[J].  Green  Chemistry,
                 Science & Business Media, 2006: 12.               2015, 17(2): 991-1000.
            [2]   March J. Advanced organic chemistry: Reactions, mechanisms, and   [11]  De Blase C R, Dichtel W R. Moving beyond boron: the emergence of
                 structure[M].  Hoboken:  New  Jersey,  John  Wiley  &  Sons,  1992:   new  linkage  chemistries  in  covalent  organic  frameworks[J].
                 337-349.                                          Macromolecules, 2016, 49(15): 5297-5305.
            [3]   Tebben  L,  Studer  A.  Nitroxides:  Applications  in  synthesis  and  in   [12]  Lin  G,  Ding  H,  Yuan  D,  et al.  A  pyrene-based,  fluorescent
                 polymer  chemistry[J].  Angewandte  Chemie  International  Edition,   three-dimensional  covalent  organic  framework[J].  Journal  of  the
                 2011, 50(22): 5034-5068.                          American Chemical Society, 2016, 138(10): 3302-3305.
            [4]   Yang Guanyu (杨贯羽),Guo Yanchun (郭彦春),Wu Guanghui (武  [13]  Xu Y, Jin S, Xu H, et al. Conjugated microporous polymers: design,
                 光辉),et al. Nitroxyl radical TEMPO: An organocatalyst for highly   synthesis  and  application[J].  Chemical  Society  Reviews,  2013,
                 efficient and selective oxidation of alcohol[J]. Progress in Chemistry   42(20): 8012-8031.
                 (化学进展),2007, 19(11): 1727-1735.               [14]  Chen L, Yang Y, Jiang D. CMPs as scaffolds for constructing porous
            [5]   Zhuang J L, Liu X Y, Zhang Y, et al. Zr-metal-organic frameworks   catalytic  frameworks:  A  built-in  heterogeneous  catalyst  with  high
                 featuring TEMPO radicals: Synergistic effect between TEMPO and   activity  and  selectivity  based  on  nanoporous  metalloporphyrin
                 hydrophilic Zr-Node defects boosting aerobic oxidation of alcohols[J].   polymers[J].  Journal  of  the  American  Chemical  Society,  2010,
                 ACS Applied Materials & Interfaces, 2018, 11(3): 3034-3043.     132(26): 9138-9143.
            [6]   Liu  R,  Liang  X,  Dong  C,  et al.  Transition-metal-free:  A  highly   [15]  Liu  M,  Zhou  B,  Zhou  L,  et al.  Nitroxyl  radical  based  conjugated
                 efficient catalytic aerobic alcohol oxidation process[J]. Journal of the   microporouspolymers  as  heterogeneous  catalysts  for  selective
                 American Chemical Society, 2004, 126(13): 4112-4113.     aerobic alcohol oxidation[J]. Journal of Materials Chemistry A, 2018,
            [7]   Liu  R,  Dong  C,  Liang  X,  et al.  Highly  efficient  catalytic  aerobic   6(21): 9860-9865.
                 oxidations  of  benzylic  alcohols  in  water[J].  Journal  of  Organic   [16]  Wang F, Kaafarani B R, Neckers D C. Synthesis of silicon-containing
                 Chemistry, 2005, 70(2): 729-731.                  unsaturated  polymers  by  hydrosilylation  reactions:  Photophysical
            [8]   Wang  L,  Li  J,  Zhao  X,  et al.  An  efficient  and  scalable  room   studies[J]. Macromolecules, 2003, 36(22): 8225-8230.
                 temperature  aerobic  alcohol  oxidation  catalyzed  by  ironchloride   [17]  He X, Shen Z, Mo W, et al. TEMPO-tert-butyl nitrite: An efficient
                 hexahydrate/mesoporous  silica  supported  TEMPO[J].  Tetrahedron,   catalytic  system  for  aerobic  oxidation  of  alcohols[J].  Advanced
                 2013, 69(30): 6041-6045.                          Synthesis & Catalysis, 2009, 351(1/2): 89-92.
   142   143   144   145   146   147   148   149   150   151   152