Page 147 - 精细化工2019年第12期
P. 147
第 12 期 徐雅琴,等: 乙酰化修饰对黑穗醋栗果实多糖结构特性及活性的影响 ·2475·
International Journal of Biological Macromolecules, 2017, 105: [27] Niknezhadn S V, Najafpour-Darzi G, Morowvat M H, et al.
1062-1070. Eexopolysaccharide production of Pantoea sp. BCCS 001 GH:
[18] Xu Y Q, Guo Y Y, Gao Y K, et al. Seperation, characterization and Physical characterizations, emulsification, and antioxidant activities[J].
inhibition on α-glucosidase, α-amylase and glycation of a International Journal of Biological Macromolecules, 2018, 118(Part
polysaccharide from blackcurrant fruits[J]. LWT-Food Science and A): 1103-1111.
Technology, 2018, 93: 16-23. [28] Liu Qingye (刘青业), Xu Xiaojuan (许小娟). Recent progress in
[19] Song Y, Yang Y, Zhang Y Y, et al. Effect of acetylation on antioxidant chain conformation and function of triple helical polysaccharides[J].
and cytoprotective activity of polysaccharides isolated from pumpkin Journal of Founctional Polymers (功能高分子学报), 2016, 29(2):
(Cucurbita pepo, lady godiva)[J]. Carbohydrate Polymers, 2013, 134-152.
98(1): 686-691. [29] Zhang Z, Wang X, Zhao M, et al. O-acetylation of low-molecular-
[20] Pan Xinxin (潘欣欣), Jiang Shu (江曙), Zhu Yue (朱悦), et al. weight polysaccharide from Enteromorpha linza with antioxidant
Acetylated modification of polysaccharides from stemsand leaves of activity[J]. International Journal of Biological Macromolecules,
Abelmoschus Manihot and its immunoregulatory activity[J]. Journal 2014, 69: 39-45.
of Nanjing University of Traditional Chinese Medicine (南京中医药 [30] Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants
大学学报), 2017, 33(2): 167-172. in normal physiological functions and human disease[J]. The
[21] Xie J H, Wang Z J, Shen M Y, et al. Sulfated modification, International Journal of Biochemistry & Cell Biology, 2007, 39:
characterization and antioxidant activities of polysaccharide from 44-84.
Cyclocarya paliurus[J]. Food Hydrocolloids, 2016, 53: 7-15. [31] Shameem N, Kamili A N, Ahmad M, et al. Radical scavenging
[22] Ren B, Chen C, Li C, et al. Optimization of microwave-assisted potential and DNA damage protection of wild edible mushrooms of
extraction of Sargassum thunbergii polysaccharides and its Kashmir Himalaya[J]. Journal of the Saudi Society of Agricultural
antioxidant and hypoglycemic activities[J]. Carbohydrate Polymers, Sciences, 2015, 16(4): 1-8.
2017, 173: 192-201. [32] Sun L, Chen W, Meng Y, et al. Interactions between polyphenols in
[23] Wang Z B, Pei J J, Ma H L, et al. Effect of extraction media on thinned young apples and porcine pancreatic α-amylase: Inhibition,
preliminary characterizations and antioxidant activities of Phellinus detailed kinetics and fluorescence quenching[J]. Food Chemistry,
linteus polysaccharides[J]. Carbohydrate Polymers, 2014, 109: 49-55. 2016, 208: 51-60.
[24] Sahragard N, Jahanbin K. Structural elucidation of the main water- [33] Qian J Y, Bai Y Y, Tang J, et al. Antioxidation and α-glucosidase
soluble polysaccharide from Rubus anatolicus roots[J]. Carbohydrate inhibitory activities of barley polysaccharides modified with
Polymers, 2017, 175: 610-617. sulfation[J]. LWT-Food Science and Technology, 2015, 64(1): 104-
[25] Wang Q, Sun Y, Yang B, et al. Optimization of polysaccharides 111.
extraction from seeds of Pharbitis nil and its anti-oxidant activity[J]. [34] Zhao Xiaoxiao (赵笑笑), Zhang Huiru (张慧茹), Meng Suxiang (孟
Carbohydrate Polymers, 2014, 102: 460-466. 素香 ), et al. The inhibiting effects of the endophytic fungi
[26] Wang Jing (王警), Wu Nini (吴妮妮), Huang Jing (黄静), et al. polysaccharide of gynostemma on α-glycosidase[J]. Food Science (食
Optimization of preparation of acetylated polysaccharides from 品科学), 2016, 37(17): 70-75.
Longan (Dimocarpus longan) Pulp by response surface methodology [35] Wang L, Zhang B, Xiao J, et al. Physicochemical, functional, and
and its antioxidant ability[J]. Food Science (食品科学), 2016, biological properties of water-soluble polysaccharides from Rosa
37(16): 63-68. roxburghii Tratt fruit[J]. Food Chemistry, 2018, 249: 127-135.
(上接第 2451 页) [9] Ruan Wanmin (阮万民), Wang Jianli (王建黎). Progress in supported
TEMPO catalysts[J]. Industrial Catalysis (工业催化), 2015, 23(12):
参考文献: 961- 965.
[10] Karimi B, Rafiee M, Alizadeh S, et al. Eco-friendly electrocatalytic
[1] Tojo G, Fernández M I. Oxidation of alcohols to aldehydes and oxidation ofalcohols on a novel electro generated TEMPO-
ketones: a guide to current common practice[M]. New York: Springer functionalized MCM-41 modified electrode[J]. Green Chemistry,
Science & Business Media, 2006: 12. 2015, 17(2): 991-1000.
[2] March J. Advanced organic chemistry: Reactions, mechanisms, and [11] De Blase C R, Dichtel W R. Moving beyond boron: the emergence of
structure[M]. Hoboken: New Jersey, John Wiley & Sons, 1992: new linkage chemistries in covalent organic frameworks[J].
337-349. Macromolecules, 2016, 49(15): 5297-5305.
[3] Tebben L, Studer A. Nitroxides: Applications in synthesis and in [12] Lin G, Ding H, Yuan D, et al. A pyrene-based, fluorescent
polymer chemistry[J]. Angewandte Chemie International Edition, three-dimensional covalent organic framework[J]. Journal of the
2011, 50(22): 5034-5068. American Chemical Society, 2016, 138(10): 3302-3305.
[4] Yang Guanyu (杨贯羽),Guo Yanchun (郭彦春),Wu Guanghui (武 [13] Xu Y, Jin S, Xu H, et al. Conjugated microporous polymers: design,
光辉),et al. Nitroxyl radical TEMPO: An organocatalyst for highly synthesis and application[J]. Chemical Society Reviews, 2013,
efficient and selective oxidation of alcohol[J]. Progress in Chemistry 42(20): 8012-8031.
(化学进展),2007, 19(11): 1727-1735. [14] Chen L, Yang Y, Jiang D. CMPs as scaffolds for constructing porous
[5] Zhuang J L, Liu X Y, Zhang Y, et al. Zr-metal-organic frameworks catalytic frameworks: A built-in heterogeneous catalyst with high
featuring TEMPO radicals: Synergistic effect between TEMPO and activity and selectivity based on nanoporous metalloporphyrin
hydrophilic Zr-Node defects boosting aerobic oxidation of alcohols[J]. polymers[J]. Journal of the American Chemical Society, 2010,
ACS Applied Materials & Interfaces, 2018, 11(3): 3034-3043. 132(26): 9138-9143.
[6] Liu R, Liang X, Dong C, et al. Transition-metal-free: A highly [15] Liu M, Zhou B, Zhou L, et al. Nitroxyl radical based conjugated
efficient catalytic aerobic alcohol oxidation process[J]. Journal of the microporouspolymers as heterogeneous catalysts for selective
American Chemical Society, 2004, 126(13): 4112-4113. aerobic alcohol oxidation[J]. Journal of Materials Chemistry A, 2018,
[7] Liu R, Dong C, Liang X, et al. Highly efficient catalytic aerobic 6(21): 9860-9865.
oxidations of benzylic alcohols in water[J]. Journal of Organic [16] Wang F, Kaafarani B R, Neckers D C. Synthesis of silicon-containing
Chemistry, 2005, 70(2): 729-731. unsaturated polymers by hydrosilylation reactions: Photophysical
[8] Wang L, Li J, Zhao X, et al. An efficient and scalable room studies[J]. Macromolecules, 2003, 36(22): 8225-8230.
temperature aerobic alcohol oxidation catalyzed by ironchloride [17] He X, Shen Z, Mo W, et al. TEMPO-tert-butyl nitrite: An efficient
hexahydrate/mesoporous silica supported TEMPO[J]. Tetrahedron, catalytic system for aerobic oxidation of alcohols[J]. Advanced
2013, 69(30): 6041-6045. Synthesis & Catalysis, 2009, 351(1/2): 89-92.