Page 35 - 精细化工2019年第12期
P. 35
第 12 期 崔维怡,等: 锰氧化物催化剂催化氧化甲醛的研究进展 ·2363·
catalysts for formaldehyde oxidation at room temperature [J]. [57] Liu F, Cao R R, Rong S P, et al. Tungsten doped manganese dioxide
Applied Surface Science, 2019, 475: 237-255. for efficient removal of gaseous formaldehyde at ambient
[40] Huang H B, Xu Y, Feng Q Y, et al. Low temperature catalytic temperatures[J]. Materials Design, 2018, 149: 165-172.
oxidation of volatile organic compounds: A review[J]. Catalysis [58] Tang X F, Li Y G, Huang X M, et al. MnO x-CeO 2 mixed oxide
Science & Technology, 2015, 5: 2649-2669. catalysts for complete oxidation of formaldehyde: Effect of
[41] Wang R H, Li J H. OMS-2 catalysts for formaldehyde oxidation: preparation method and calcination temperature[J]. Applied Catalysis
effects of Ce and Pt on structure and performance of the catalysts[J]. B: Environmental, 2006, 62(3/4): 265-273.
Catalysis Letters, 2009, 131(3/4): 500-505. [59] Lu S H, Li K L, Huang F L, et al. Efficient MnO x-Co 3O 4-CeO 2
[42] Yu X H, He J H, Wang D H, et al. Facile controlled synthesis of catalysts for formaldehyde elimination[J]. Applied Surface Science,
Pt/MnO 2 nanostructured catalysts and their catalytic performance for 2017, 400: 277-282.
oxidative decomposition of formaldehyde[J]. Journal of Physical [60] Wen Y R, Tang X, Li J H, et al. Impact of synthesis method on
Chemistry C, 2012, 116(1), 851-860. catalytic performance of MnO x-SnO 2 for controlling formaldehyde
[43] Liu L L, Tian H, He J H, et al. Preparation of birnessite-supported Pt emission[J]. Catalysis Communications, 2009, 10(8): 1157-1160.
nanoparticles and their application in catalytic oxidation of [61] Miyawaki J, Lee G H, Yeh J, et al. Development of carbon-supported
formaldehyde[J]. Journal of Environmental Sciences, 2012, 24(6): hybrid catalyst for clean removal of formaldehyde indoors[J].
1117-1124. Catalysis Today, 2012, 185(1): 278-283.
[44] Zhou J, Qin L F, Xiao W, et al. Oriented growth of layered-MnO 2 [62] Wang H C, Huang Z W, Jiang Z, et al. Trifunctional C@MnO
nanosheets over α-MnO 2 nanotubes for enhanced room-temperature catalyst for enhanced stable simultaneously catalytic removal[J].
HCHO oxidation[J]. Applied Catalysis B: Environmental, 2017, 207: ACS Catalysis. 2018, 8: 3164-3180.
233-243. [63] Fang R M, Huang H B, Ji J, et al. Efficient MnO x supported on
[45] Huang S Y, Cheng B, Yu J G, et al. Hierarchical Pt/MnO 2-Ni(OH) 2 coconut shell activated carbon for catalytic oxidation of indoor
hybrid nanoflakes with enhanced room-temperature formaldehyde formaldehyde at room temperature[J]. Chemical Engineering Journal,
oxidation activity[J]. ACS Sustainable Chemistry & Engineering. 2018, 334: 2050-2057.
2018, 6(9): 12481-12488. [64] Li J G, Zhang P Y, Wang J L, et al. Birnessite−type manganese oxide
[46] Bai B Y, Qiao Q, Arandiyan H, et al. Three-dimensional ordered on granular activated carbon for formaldehyde removal at room
mesoporous MnO 2-supported Ag nanoparticles for catalytic removal temperature[J]. Journal of Physical Chemistry C, 2016, 120(42):
of formaldehyde[J]. Environmental Science & Technology, 2016, 24121-24129.
50(5): 2635-2640. [65] Liu F, Rong S P, Zhang P Y, et al. One-step synthesis of nanocarbon-
[47] Tang X F, Chen J L, Li Y G, et al. Complete oxidation of decorated MnO 2 with superior activity for indoor formaldehyde
formaldehyde over Ag/MnO x-CeO 2 catalysts[J]. Chemical Engineering removal at room temperature[J]. Applied Catalysis B: Environmental,
Journal, 2006, 118(1/2): 119-125. 2018, 235: 158-167.
[48] Huang F L, Wang X, Zhu Q Y, et al. Efficient formaldehyde [66] Zou N, Nie Q, Zhang X R, et al. Electrothermal regeneration by
elimination over Ag/MnO 2 nanorods: Influence of the Ag loading[J]. Joule heat effect on carbon cloth based MnO 2 catalyst for long-term
Catalysis Surveys from Asia, 2019, 23: 33-40. formaldehyde removal[J]. Chemical Engineering Journal, 2019, 357:
[49] Yu X H, He J H, Wang D H, et al. Au–Pt bimetallic nanoparticles 1-10.
supported on nest-like MnO 2: Synthesis and application in HCHO [67] Wang J L, Zhang G K, Zhang P Y. Graphene-assisted photothermal
decomposition[J]. Journal of Nanoparticle Research, 1260:1-14. effect promoting catalytic activity of layered MnO 2 for gaseous
[50] Wang J L, Li D D, Li P L, et al. Layered manganese oxides for formaldehyde oxidation[J]. Applied Catalysis B: Environmental,
formaldehyde-oxidation at room temperature: The effect of interlayer 2018, 239: 77-85.
cations[J]. RSC Advances, 2015, 5: 100434-100442. [68] Zhou L, He J H, Zhang J, et al. Facile in-situ synthesis of manganese
[51] Wang J L, Li J, Zhang P Y, et al. Understanding the “seesaw effect” dioxide nanosheets on cellulose fibers and their application in
+
of interlayered K with different structure in manganese oxides for oxidative decomposition of formaldehyde[J]. Journal of Physical
the enhanced formaldehyde oxidation[J]. Applied Catalysis B: Chemistry C, 2011, 115(34): 16873-16878.
Environmental, 2018, 224: 863-870. [69] Yu X H, He J H, Wang D H, et al. Preparation of Au 0.5Pt 0.5/
[52] Rong S P, Li K Z, Zhang P Y, et al. Potassium associated manganese MnO 2/cotton catalysts for decomposition of formaldehyde[J]. Journal
vacancy in birnessite-type manganese dioxide for airborne formaldehyde of Nanoparticle Research, 2013, 15: 1832-1843.
oxidation[J]. Catalysis Science & Technology, 2018, 8: 1799-1812. [70] Wang J L, Yunus R, Li J G, et al. In situ synthesis of manganese
[53] Chen Y, He J H, Tian H, et al. Enhanced formaldehyde oxidation on oxides on polyester fiber for formaldehyde decomposition at room
Pt/MnO 2 catalysts modified with alkali metal salts[J]. Journal of temperature[J]. Applied Surface Science, 2015, 357: 787-794.
Colloid and Interface Science, 2014, 428: 1-7. [71] Tang X F, Chen J L, Huang X M, et al. Pt/MnO x-CeO 2 catalysts for
[54] Zhu L, Wang J L, Rong H P, et al. Cerium modified birnessite-type the complete oxidation of formaldehyde at ambient temperature[J].
MnO 2 for gaseous formaldehyde oxidation at low temperature[J]. Applied Catalysis B: Environmental, 2008, 81: 115-121.
Applied Catalysis B: Environmental, 2017,211: 212-221. [72] Wang J L, Li J G, Jiang C J, et al. The effect of manganese vacancy
[55] Shi C, Wang Y, Zhu A M, et al. Mn xCo 3−xO 4 solid solution as in birnessite-type MnO 2 on room-temperature oxidation of
high-efficient catalysts for low-temperature oxidation of formaldehyde in air[J]. Applied Catalysis B: Environmental, 2017,
formaldehyde[J]. Catalysis Communications, 2012, 28: 18-22. 204: 147-155.
[56] Wang Y, Zhu A M, Chen B B, et al. Three-dimensional ordered [73] Sidheswaran M A, Destaillats H, Sullian D P, et al. Quantitative
mesoporous Co–Mn oxide: A highly active catalyst for room-temperature mineralization of airborne formaldehyde using
“storage-oxidation” cycling for the removal of formaldehyde[J]. manganese oxide catalysts[J]. Applied Catalysis B: Environmental,
Catalysis Communications, 2013, 36: 52-57. 2011, 107(1/2): 34-41.