Page 35 - 精细化工2019年第12期
P. 35

第 12 期                     崔维怡,等:  锰氧化物催化剂催化氧化甲醛的研究进展                                   ·2363·


                 catalysts  for  formaldehyde  oxidation  at  room  temperature  [J].   [57]  Liu F, Cao R R, Rong S P, et al. Tungsten doped manganese dioxide
                 Applied Surface Science, 2019, 475: 237-255.      for  efficient  removal  of  gaseous  formaldehyde  at  ambient
            [40]  Huang  H  B,  Xu  Y,  Feng  Q  Y,  et al.  Low  temperature  catalytic   temperatures[J]. Materials Design, 2018, 149: 165-172.
                 oxidation  of  volatile  organic  compounds:  A  review[J].  Catalysis   [58]  Tang  X  F,  Li  Y  G,  Huang  X  M,  et al.  MnO x-CeO 2 mixed oxide
                 Science & Technology, 2015, 5: 2649-2669.         catalysts  for  complete  oxidation  of  formaldehyde:  Effect  of
            [41]  Wang  R  H,  Li  J  H.  OMS-2  catalysts  for  formaldehyde  oxidation:   preparation method and calcination temperature[J]. Applied Catalysis
                 effects of Ce and Pt on structure and performance of the catalysts[J].   B: Environmental, 2006, 62(3/4): 265-273.
                 Catalysis Letters, 2009, 131(3/4): 500-505.     [59]  Lu  S  H,  Li  K  L,  Huang  F  L,  et al.  Efficient  MnO x-Co 3O 4-CeO 2
            [42]  Yu  X  H,  He  J  H,  Wang  D  H,  et al.  Facile  controlled  synthesis  of   catalysts for formaldehyde elimination[J]. Applied Surface Science,
                 Pt/MnO 2 nanostructured catalysts and their catalytic performance for   2017, 400: 277-282.
                 oxidative  decomposition  of  formaldehyde[J].  Journal  of  Physical   [60]  Wen  Y  R,  Tang  X,  Li  J  H,  et al.  Impact  of  synthesis  method  on
                 Chemistry C, 2012, 116(1), 851-860.               catalytic  performance  of  MnO x-SnO 2  for  controlling  formaldehyde
            [43]  Liu L L, Tian H, He J H, et al. Preparation of birnessite-supported Pt   emission[J]. Catalysis Communications, 2009, 10(8): 1157-1160.
                 nanoparticles  and  their  application  in  catalytic  oxidation  of   [61]  Miyawaki J, Lee G H, Yeh J, et al. Development of carbon-supported
                 formaldehyde[J].  Journal  of  Environmental  Sciences,  2012,  24(6):   hybrid  catalyst  for  clean  removal  of  formaldehyde  indoors[J].
                 1117-1124.                                        Catalysis Today, 2012, 185(1): 278-283.
            [44]  Zhou J, Qin L F, Xiao W, et al. Oriented growth of layered-MnO 2   [62]  Wang  H  C,  Huang  Z  W,  Jiang  Z,  et al.  Trifunctional  C@MnO
                 nanosheets over α-MnO 2 nanotubes for enhanced room-temperature   catalyst  for  enhanced  stable  simultaneously  catalytic  removal[J].
                 HCHO oxidation[J]. Applied Catalysis B: Environmental, 2017, 207:   ACS Catalysis. 2018, 8: 3164-3180.
                 233-243.                                      [63]  Fang  R  M,  Huang  H  B,  Ji  J, et al.  Efficient  MnO x  supported  on
            [45]  Huang S Y, Cheng B, Yu J G, et al. Hierarchical Pt/MnO 2-Ni(OH) 2   coconut  shell  activated  carbon  for  catalytic  oxidation  of  indoor
                 hybrid  nanoflakes  with  enhanced  room-temperature  formaldehyde   formaldehyde at room temperature[J]. Chemical Engineering Journal,
                 oxidation  activity[J].  ACS  Sustainable  Chemistry  &  Engineering.   2018, 334: 2050-2057.
                 2018, 6(9): 12481-12488.                      [64]  Li J G, Zhang P Y, Wang J L, et al. Birnessite−type manganese oxide
            [46]  Bai  B  Y,  Qiao  Q,  Arandiyan  H,  et al.  Three-dimensional  ordered   on  granular  activated  carbon  for  formaldehyde  removal  at  room
                 mesoporous MnO 2-supported Ag nanoparticles for catalytic removal   temperature[J].  Journal  of  Physical  Chemistry  C,  2016,  120(42):
                 of  formaldehyde[J].  Environmental  Science  &  Technology,  2016,   24121-24129.
                 50(5): 2635-2640.                             [65]  Liu F, Rong S P, Zhang P Y, et al. One-step synthesis of nanocarbon-
            [47]  Tang  X  F,  Chen  J  L,  Li  Y  G,  et al.  Complete  oxidation  of   decorated  MnO 2  with  superior  activity  for  indoor  formaldehyde
                 formaldehyde over Ag/MnO x-CeO 2 catalysts[J]. Chemical Engineering   removal at room temperature[J]. Applied Catalysis B: Environmental,
                 Journal, 2006, 118(1/2): 119-125.                 2018, 235: 158-167.
            [48]  Huang  F  L,  Wang  X,  Zhu  Q  Y,  et al.  Efficient  formaldehyde   [66]  Zou  N,  Nie  Q,  Zhang  X  R, et al.  Electrothermal  regeneration  by
                 elimination over Ag/MnO 2 nanorods: Influence of the Ag loading[J].   Joule heat effect on carbon cloth based MnO 2 catalyst for long-term
                 Catalysis Surveys from Asia, 2019, 23: 33-40.     formaldehyde removal[J]. Chemical Engineering Journal, 2019, 357:
            [49]  Yu X H, He J H, Wang D H, et al. Au–Pt bimetallic nanoparticles   1-10.
                 supported on nest-like MnO 2: Synthesis and application in HCHO   [67]  Wang J L, Zhang G K, Zhang P Y. Graphene-assisted photothermal
                 decomposition[J]. Journal of Nanoparticle Research, 1260:1-14.     effect  promoting  catalytic  activity  of  layered  MnO 2 for gaseous
            [50]  Wang  J  L,  Li  D  D,  Li  P  L,  et al.  Layered  manganese  oxides  for   formaldehyde  oxidation[J].  Applied  Catalysis  B:  Environmental,
                 formaldehyde-oxidation at room temperature: The effect of interlayer   2018, 239: 77-85.
                 cations[J]. RSC Advances, 2015, 5: 100434-100442.     [68]  Zhou L, He J H, Zhang J, et al. Facile in-situ synthesis of manganese
            [51]  Wang J L, Li J, Zhang P Y, et al. Understanding the “seesaw effect”   dioxide  nanosheets  on  cellulose  fibers  and  their  application  in
                           +
                 of interlayered K  with different structure in manganese oxides for   oxidative  decomposition  of  formaldehyde[J].  Journal  of  Physical
                 the  enhanced  formaldehyde  oxidation[J].  Applied  Catalysis  B:   Chemistry C, 2011, 115(34): 16873-16878.
                 Environmental, 2018, 224: 863-870.            [69]  Yu  X  H,  He  J  H,  Wang  D  H,  et al.  Preparation  of  Au 0.5Pt 0.5/
            [52]  Rong S P, Li K Z, Zhang P Y, et al. Potassium associated manganese   MnO 2/cotton catalysts for decomposition of formaldehyde[J]. Journal
                 vacancy in birnessite-type manganese dioxide for airborne formaldehyde   of Nanoparticle Research, 2013, 15: 1832-1843.
                 oxidation[J]. Catalysis Science & Technology, 2018, 8: 1799-1812.     [70]  Wang  J  L,  Yunus  R,  Li  J  G, et  al.  In  situ  synthesis  of  manganese
            [53]  Chen Y, He J H, Tian H, et al. Enhanced formaldehyde oxidation on   oxides  on  polyester  fiber  for  formaldehyde  decomposition  at  room
                 Pt/MnO 2  catalysts  modified  with  alkali  metal  salts[J].  Journal  of   temperature[J]. Applied Surface Science, 2015, 357: 787-794.
                 Colloid and Interface Science, 2014, 428: 1-7.     [71]  Tang X F, Chen J L, Huang X M, et al. Pt/MnO x-CeO 2 catalysts for
            [54]  Zhu L, Wang J L, Rong H P, et al. Cerium modified birnessite-type   the  complete  oxidation  of  formaldehyde  at  ambient  temperature[J].
                 MnO 2  for  gaseous  formaldehyde  oxidation  at  low  temperature[J].   Applied Catalysis B: Environmental, 2008, 81: 115-121.
                 Applied Catalysis B: Environmental, 2017,211: 212-221.     [72]  Wang J L, Li J G, Jiang C J, et al. The effect of manganese vacancy
            [55]  Shi  C,  Wang  Y,  Zhu  A  M,  et al.  Mn xCo 3−xO 4  solid  solution  as   in  birnessite-type  MnO 2  on  room-temperature  oxidation  of
                 high-efficient   catalysts   for   low-temperature   oxidation   of   formaldehyde  in  air[J].  Applied  Catalysis  B:  Environmental,  2017,
                 formaldehyde[J]. Catalysis Communications, 2012, 28: 18-22.     204: 147-155.
            [56]  Wang  Y,  Zhu  A  M,  Chen  B  B,  et al.  Three-dimensional  ordered   [73]  Sidheswaran  M  A,  Destaillats  H,  Sullian  D  P,  et al.  Quantitative
                 mesoporous  Co–Mn  oxide:  A  highly  active  catalyst  for   room-temperature  mineralization  of  airborne  formaldehyde  using
                 “storage-oxidation”  cycling  for  the  removal  of  formaldehyde[J].   manganese  oxide  catalysts[J].  Applied  Catalysis  B:  Environmental,
                 Catalysis Communications, 2013, 36: 52-57.        2011, 107(1/2): 34-41.
   30   31   32   33   34   35   36   37   38   39   40