Page 64 - 精细化工2019年第12期
P. 64
·2392· 精细化工 FINE CHEMICALS 第 36 卷
2.8 粒径分析 参考文献:
最佳工艺下合成的 CSM 粒径及其分布如图 11 [1] Saha N, Rahman M S, Ahmed M B, et al. Industrial metal pollution
所示。 in water and probabilistic assessment of human health risk[J]. Journal
of Environmental Management, 2017, 185: 70-78.
[2] Machado C S, Fregonesi B M, Alves R I S, et al. Health risks of
environmental exposure to metals and herbicides in the Pardo River,
Brazil[J]. Environmental Science and Pollution Research, 2017,
24(2/3): 1-13.
[3] Zhang Y, Chu C, Li T, et al. A water quality management strategy for
regionally protected water through health risk assessment and spatial
distribution of heavy metal pollution in 3 marine reserves[J]. Science
of the Total Environment, 2017, 599/600: 721-731.
[4] Wu Yihan, Pang Hongwei, Liu Yue, et al. Environmental remediation
of heavy metal ions by novel-nanomaterials: A review[J].
Environmental Pollution, 2019, 246: 608-620.
[5] Zou Y, Wang X, Khan A, et al. Environmental remediation and
application of nanoscale zero-valent iron and its composites for the
removal of heavy metal ions: A review[J]. Environmental Science &
Technology, 2016, 50(14): 7290-7304.
图 11 CSM 的粒径及其分布曲线 [6] Ihsanullah, Abbas A, Al-Amer A M, et al. Heavy metal removal from
Fig. 11 Particle size and particle size distribution of CSM aqueous solution by advanced carbon nanotubes: Critical review of
adsorption applications[J]. Separation & Purification Technology,
由图 11 可知,CSM 粒径分布中只显示一个峰, 2016, 157: 141-161.
2+
2+
2+
[7] Tan P, Sun J, Hu Y, et al. Adsorption of Cu , Cd and Ni from
质量距体积平均粒径〔D (4,3) 〕为 13.98 μm,平均粒 aqueous single metal solutions on graphene oxide membranes[J].
径(D 50 ,即中位径)为 13.79 μm,累积分布为 98% Journal of Hazardous Materials, 2015, 297: 251-260.
[8] Oualid Hamdaoui. Adsorption of Cu(Ⅱ) from aqueous phase by
时的最大颗粒的等效直径(D 98 )为 31.11 μm,跨度 Cedar bark[J].Journal of Dispersion Science and Technology, 2017,
是 1.58,粒径分布均匀集中,服从正态分布。此外, 38(8): 1087-1091.
[9] Rezania S, Taib S M, Md Din M F, et al. Comprehensive review on
还发现通过粒度仪测定出的微球粒径与 SEM 图中 phytotechnology: Heavy metals removal by diverse aquatic plants
微球粒径大小不一致,这可能是由于 CSM 是一种不 species from wastewater[J]. Journal of Hazardous Materials, 2016,
318: 587-599.
溶水、不溶油的物质,在分散介质中不能均匀分散, [10] Al-Qodah Z, Al-Shannag M. Heavy metal ions removal from
仍有微球粘连,导致测出的微球粒径偏大。 wastewater using electrocoagulation processes: A comprehensive
review[J]. Separation Science and Technology, 2017, 56: 35-44.
3 结论 [11] Cui Wenjuan (崔文娟), Niu Yuhua (牛育华), Zhao Dongdong (赵冬
冬), et al. Research progress of adsorption behavior of humic acid[J].
Chemical Fertilizer Industry (化肥工业), 2016, 43(6): 5-8,86.
(1)以 HA 和 St 为原料,K 2 S 2 O 8 /NaHSO 3 为复 [12] Martina Klučáková, Michal Kalina, Jiří Smilek, et al. The transport
of metal ions in hydrogels containing humic acids as active
合引发剂,MBAA 为交联剂合成了腐植酸/淀粉复合
complexation agent[J]. Colloids and Surfaces A: Physicochemical
微球,通过单因素和响应曲面设计得到最佳工艺: and Engineering Aspects, 2018, 557: 116-122.
[13] Bai Hongcheng, Wei Shiqiang, Jiang Zhenmao, et al. Pb( Ⅱ )
以质量为 1.5 g 的 St 为基准,取 HA 2.265 g、K 2 S 2 O 8 /
bioavailability to algae (chlorella pyrenoidosa) in relation to its
NaHSO 3 0.6 g/0.6 g、MBAA 0.6 g、复合乳化剂 1.2 g、 complexation with humic acids of different molecular weight[J].
液体石蜡 90 mL,反应温度为 50 ℃、反应时间 3 h。 Ecotoxicology and Environmental Safety, 2019, 167: 1-9.
[14] Agnihotri S, Singhal R. Synthesis and characterization of novel poly
(2)通过 FTIR、SEM、XRD、TGA 和激光粒 (acrylic acid/sodium alginate/sodium humate) superabsorbent
2+
2+
2+
度分布仪对 CSM 的结构、形貌和性能进行了表征和 hydrogels. Part Ⅱ: The effect of SH variation on Cu , Pb , Fe
metal ions, MB, CV dye adsorption study[J]. Journal of Polymers
测定,发现最佳工艺条件下合成的 CSM 形状规则, and the Environment, 2017, 39(2): 1-13.
表面粗糙,粒径分布均匀,平均粒径为 13.79 μm, [15] Guo Yani (郭雅妮), Hu Chenzhen (胡陈真), Luo Xiaolin (骆晓琳),
et al. The preparation and characterization of humic acid adsorbent
其热稳定性良好,结晶度相对 St 降低;在 CSM 用 loaded Fe/Cu[J]. Journal of Shaanxi University of Science &
量为 5 g/L、pH=1、温度 25 ℃,振荡 3 h 条件下, Technology (陕西科技大学学报), 2018, 36(3): 29-34.
[16] Francine Côa, Mathias Strauss, Zaira Clemente, et al. Coating carbon
对水中 Cr(Ⅵ)(10 mg/L)去除率可达到 99.91%,吸附 nanotubes with humic acid using an ecofriendly mechanochemical
量为 1.9980 mg/g。相较于 HA〔当 HA 用量 5 g/L、 method: Application for Cu(Ⅱ) ions removal from water and aquatic
ecotoxicity[J]. Science of the Total Environment, 2017, 607/608:
pH=1、温度 25 ℃、振荡 3 h 时,对 Cr(Ⅵ)(10 mg/L) 1479-1486.
去除率为 94.99%〕和累托石/腐植酸微球 [23] 〔当微 [17] Pallavi Singhal, Sanjay K Jha, Shailaja P Pandey, et al. Rapid
extraction of uranium from sea water using Fe 3O 4 and humic acid
球用量 20 g/L、pH=1、温度 30 ℃、振荡 2.5 h 时, coated Fe 3O 4 nanoparticles[J]. Journal of Hazardous Materials, 2017,
对 Cr(Ⅵ)(10 mg/L)去除率为 98.39%〕有显著提高, 335: 152-161.
表明 CSM 是一种性能优良的重金属离子吸附剂。 (下转第 2430 页)