Page 51 - 201902
P. 51
第 2 期 尹 培,等: 三苯胺类荧光探针的合成与细胞成像 ·217·
图 8 TPAS 作为荧光探针用于 A549 活细胞成像图片,(a)放大倍率为 40 倍,(b)放大倍率为 100 倍
Fig. 8 Images of A549 cells stained with TPAS, the fluorescence images were taken at magnifications of (a) with a
magnification of 40 times, (b) with a magnification of 100 times
3 结论 host-fluorophore systems[J]. Accounts of Chemical Research, 2014,
47(7): 2150-2159.
[12] Wang Y X, Shyy J Y J, Chien S. Fluorescence proteins, live-cell
通过 Vilsmeier-Haack 反应和 McMurry 反应合 imaging, and mechanobiology: Seeing is believing[J]. Annual
成了 1 个由双键桥连接了 2 个三苯胺基团的荧光探 Review of Biomedical Engineering, 2008, 10(1): 1-38.
[13] Borisov S M, Wolfbeis O S. Optical biosensors[J]. Chemical
针 TPAS。TPAS 分子在稀溶液中表现出聚集荧光猝 Reviews, 2008, 108(2): 423-461.
[14] Shrey Sindhwani, Abdullah Muhammad Syed, Stefan Wilhelm, et al.
灭(ACQ)性质,而其固体却有强的蓝色荧光。TPAS
Three-dimensional optical mapping of nanoparticle distribution in
分子光稳定性好、尺寸小、细胞毒性低、分布均一 intact tissues[J]. ACS Nano, 2016, 10(5): 5468-5478.
[15] Yasuhiro Kubota, Masahiro Tsukamoto, Katsuhiro Ohnishi, et al.
且易穿透细胞膜。作为荧光探针能实现对 A549 活
Synthesis and fluorescence properties of novel squarylium-boron
细胞高灵敏度、高分辨率的成像。这些研究结果可 complexes[J]. Organic Chemistry Frontiers, 2017, 8(4): 1522-1527.
[16] Ma H C, Yang Z M, Cao H Y, et al. One bioprobe: A fluorescent and
以为细胞跟踪器的设计提供理论依据,并帮助更深
AIE-active macromolecule; two targets: nucleolus and mitochondria
入的理解生物问题。 with long term tracking[J]. Journal of Materials Chemistry B, 2017,
5: 655-660.
参考文献: [17] Wang H, Xie L, Peng Q, et al. Novel thermally activated delayed
fluorescence materials–thioxanthone derivatives and their applications
[1] Zhou X, Lee S, Xu Z, et al. Recent progress on the development of for highly efficient OLEDs[J]. Advanced Materials, 2014, 26(30):
chemosensors for gases[J]. Chemical Reviews, 2015, 115(15): 5198-5204.
7944-8000. [18] Ma H C, Yang Z M, Cao H Y, et al. Triphenylamine-based
[2] Chan J, Dodani S C, Chang C J. Reaction-based smallmolecule fluorescent sensors for CO 2 response and detection of F- with high
fluorescent probes for chemoselective bioimaging[J]. Nature sensitivity and selectivity[J]. Dyes and Pigments, 2017, 140:131-140.
Chemistry, 2012, 4(12): 973-984. [19] Ma H C, Ma Y, Li W F, et al. Triphenylamine-based fluorescent soft
[3] Goswami S, Das S, Aich K, et al. Chemodosimeter for the matter: interlaced methyl cinnamate groups as the dominant
ratiometric detection of hydrazine based on return of ESIPT and its interaction tools for gel formation[J]. Macromolecular Chemistry &
application in live-cell imaging[J]. Organic Letters, 2013, 15(21): Physics, 2014, 215(23): 2305-2310.
5412-5415. [20] Cao Yuanle, Yang Mingdi, Wang Yang, et al. Aggregation-induced
[4] Kambam S, Wang B, Wang F, et al. A highly sensitive and selective and crystallization-enhanced emissions with time-dependence of a
3+
fluorescein-based fluorescence probe for Au and its application in new Schiff-base family based on benzimidazole[J]. Journal of
living cell imaging[J]. Sensors and Actuators B, 2015, 209: 1005-1010. Materials Chemistry C, 2014, 2(19): 3686-3694.
[5] Li X M, Zhao R R, Yang Y, et al. A rhodamine-based fluorescent [21] König K, Ehlers S, Riemann I, et al. Clinical two-photon
sensor for chromium ions and its application in bioimaging[J]. microendoscopy[J]. Microscopy Researsh & Technique, 2007, 70(5):
Chinese Chemical Letters, 2017, 28(6): 1258-1261. 398-402.
[6] Bessette A, Hanan G S. Design, synthesis and photophysical studies [22] Hwan Myung Kim, Bong Rae Cho. Small-molecule two-photon
of dipyrromethene-based materials: Insights into their applications in probes for bioimaging applications[J]. Chemical Reviews, 2015,
organic photovoltaic devices[J]. Chemical Society Reviews, 2014, 115(11): 5014-5055.
43(10): 3342-3405. [23] Tim Mosmann. Rapid colorimetric assay for cellular growth and
[7] Ma H, Yang M, Zhang C, et al. Aggregation-induced emission survival: Application to proliferation and cytotoxicity assays[J].
(AIE)-active fluorescent probes with multiple binding sites toward Journal of Immunological Methods, 1983, 65(1): 55-63.
ATP sensing and live cell imaging[J]. Journal of Materials Chemistry [24] Zhang J F, Chen R, Zhu Z L, et al. Highly stable near-infrared
B, 2017, 5(43): 8525-8531. fluorescent organic nanoparticles with a large stokes shift for
[8] Wang Y G, Zhou K J, Huang G, et al. A nanoparticle based strategy noninvasive long-term cellular imaging[J]. ACS Applied Materials &
for the imaging of a broad range of tumours by nonlinear amplification of Interfaces, 2015, 7(47): 26266-26274.
microenvironment signals[J]. Nature Materials, 2014, 13(2): 204-212. [25] Drobizhev M, Karotki A, Dzenis Y, et al. Strong cooperative
[9] Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of enhancement of two-photon absorption in dendrimers[J]. Journal of
fluorescent nanomaterials and related systems: new insights into Physical Chemistry B, 2003, 107(31): 7540-7543.
biosensing, bioimaging, genomics, diagnostics, and therapy[J]. [26] Duan X F, Zeng J, Lü J W, et al. Insights into the general and
Chemical Reviews, 2014, 114(12): 6130-6178. efficient cross mcmurry reactions between ketones[J]. Journal of
[10] Li J, Ma C, Tang J, et al. Novel starburst molecule as a hole Organic Chemistry, 2006, 71(26): 9873-9876.
injecting and transporting material for organic light-emitting [27] Hu R, Lager E, Aguilar-Aguilar A, et al. Twisted intramolecular
devices[J]. Chemistry of Materials, 2005, 17(3): 615-619. charge transfer and aggregation induced emission of BODIPY
[11] Ghale G, Nau W M. Dynamically analyte-responsive macrocyclic derivatives[J]. Journal of Physical Chemistry C, 2009, 113(36): 15845.