Page 51 - 201902
P. 51

第 2 期                        尹   培,等:  三苯胺类荧光探针的合成与细胞成像                                  ·217·


















                   图 8  TPAS 作为荧光探针用于 A549 活细胞成像图片,(a)放大倍率为 40 倍,(b)放大倍率为 100 倍
            Fig.  8    Images  of  A549  cells  stained  with  TPAS,  the  fluorescence  images  were  taken  at  magnifications  of  (a)  with  a
                   magnification of 40 times, (b) with a magnification of 100 times

            3   结论                                                 host-fluorophore systems[J]. Accounts of Chemical Research, 2014,
                                                                   47(7): 2150-2159.
                                                               [12]  Wang  Y  X,  Shyy  J  Y  J,  Chien  S.  Fluorescence  proteins,  live-cell
                 通过 Vilsmeier-Haack 反应和 McMurry 反应合                imaging,  and  mechanobiology:  Seeing  is  believing[J].  Annual
            成了 1 个由双键桥连接了 2 个三苯胺基团的荧光探                             Review of Biomedical Engineering, 2008, 10(1): 1-38.
                                                               [13]  Borisov  S  M,  Wolfbeis  O  S.  Optical  biosensors[J].  Chemical
            针 TPAS。TPAS 分子在稀溶液中表现出聚集荧光猝                            Reviews, 2008, 108(2): 423-461.
                                                               [14]  Shrey Sindhwani, Abdullah Muhammad Syed, Stefan Wilhelm, et al.
            灭(ACQ)性质,而其固体却有强的蓝色荧光。TPAS
                                                                   Three-dimensional  optical  mapping  of  nanoparticle  distribution  in
            分子光稳定性好、尺寸小、细胞毒性低、分布均一                                 intact tissues[J]. ACS Nano, 2016, 10(5): 5468-5478.
                                                               [15]  Yasuhiro  Kubota,  Masahiro  Tsukamoto,  Katsuhiro  Ohnishi,  et al.
            且易穿透细胞膜。作为荧光探针能实现对 A549 活
                                                                   Synthesis  and  fluorescence  properties  of  novel  squarylium-boron
            细胞高灵敏度、高分辨率的成像。这些研究结果可                                 complexes[J]. Organic Chemistry Frontiers, 2017, 8(4): 1522-1527.
                                                               [16]  Ma H C, Yang Z M, Cao H Y, et al. One bioprobe: A fluorescent and
            以为细胞跟踪器的设计提供理论依据,并帮助更深
                                                                   AIE-active macromolecule; two targets: nucleolus and mitochondria
            入的理解生物问题。                                              with long term tracking[J]. Journal of Materials Chemistry B, 2017,
                                                                   5: 655-660.
            参考文献:                                              [17]  Wang  H,  Xie  L,  Peng  Q,  et al.  Novel  thermally  activated  delayed
                                                                   fluorescence materials–thioxanthone derivatives and their applications
            [1]   Zhou X, Lee S, Xu Z, et al. Recent progress on the development of   for  highly  efficient  OLEDs[J].  Advanced  Materials,  2014,  26(30):
                 chemosensors  for  gases[J].  Chemical  Reviews,  2015,  115(15):   5198-5204.
                 7944-8000.                                    [18]  Ma  H  C,  Yang  Z  M,  Cao  H  Y,  et al.  Triphenylamine-based
            [2]   Chan  J,  Dodani  S  C,  Chang  C  J.  Reaction-based  smallmolecule   fluorescent sensors for CO 2 response and detection of F- with high
                 fluorescent  probes  for  chemoselective  bioimaging[J].  Nature   sensitivity and selectivity[J]. Dyes and Pigments, 2017, 140:131-140.
                 Chemistry, 2012, 4(12): 973-984.              [19]  Ma H C, Ma Y, Li W F, et al. Triphenylamine-based fluorescent soft
            [3]   Goswami  S,  Das  S,  Aich  K,  et al.  Chemodosimeter  for  the   matter:  interlaced  methyl  cinnamate  groups  as  the  dominant
                 ratiometric detection of hydrazine based on return of ESIPT and its   interaction tools for gel formation[J]. Macromolecular Chemistry &
                 application  in  live-cell  imaging[J].  Organic  Letters,  2013,  15(21):   Physics, 2014, 215(23): 2305-2310.
                 5412-5415.                                    [20]  Cao Yuanle,  Yang Mingdi, Wang Yang, et al. Aggregation-induced
            [4]   Kambam S, Wang B, Wang F, et al. A highly sensitive and selective   and  crystallization-enhanced  emissions  with  time-dependence  of  a
                                            3+
                 fluorescein-based fluorescence probe for Au  and its application in   new  Schiff-base  family  based  on  benzimidazole[J].  Journal  of
                 living cell imaging[J]. Sensors and Actuators B, 2015, 209: 1005-1010.   Materials Chemistry C, 2014, 2(19): 3686-3694.
            [5]   Li X M,  Zhao  R R,  Yang  Y,  et al.  A  rhodamine-based  fluorescent   [21]  König  K,  Ehlers  S,  Riemann  I,  et al.  Clinical  two-photon
                 sensor  for  chromium  ions  and  its  application  in  bioimaging[J].   microendoscopy[J]. Microscopy Researsh & Technique, 2007, 70(5):
                 Chinese Chemical Letters, 2017, 28(6): 1258-1261.   398-402.
            [6]   Bessette A, Hanan G S. Design, synthesis and photophysical studies   [22]  Hwan  Myung  Kim,  Bong  Rae  Cho.  Small-molecule  two-photon
                 of dipyrromethene-based materials: Insights into their applications in   probes  for  bioimaging  applications[J].  Chemical  Reviews,  2015,
                 organic  photovoltaic  devices[J].  Chemical  Society  Reviews,  2014,   115(11): 5014-5055.
                 43(10): 3342-3405.                            [23]  Tim  Mosmann.  Rapid  colorimetric  assay  for  cellular  growth  and
            [7]   Ma  H,  Yang  M,  Zhang  C,  et al.  Aggregation-induced  emission   survival:  Application  to  proliferation  and  cytotoxicity  assays[J].
                 (AIE)-active  fluorescent  probes  with  multiple  binding  sites  toward   Journal of Immunological Methods, 1983, 65(1): 55-63.
                 ATP sensing and live cell imaging[J]. Journal of Materials Chemistry   [24]  Zhang  J  F,  Chen  R,  Zhu  Z  L,  et al.  Highly  stable  near-infrared
                 B, 2017, 5(43): 8525-8531.                        fluorescent  organic  nanoparticles  with  a  large  stokes  shift  for
            [8]   Wang Y G, Zhou K J, Huang G, et al. A nanoparticle based strategy   noninvasive long-term cellular imaging[J]. ACS Applied Materials &
                 for the imaging of a broad range of tumours by nonlinear amplification of   Interfaces, 2015, 7(47): 26266-26274.
                 microenvironment signals[J]. Nature Materials, 2014, 13(2): 204-212.   [25]  Drobizhev  M,  Karotki  A,  Dzenis  Y,  et al.  Strong  cooperative
            [9]   Yao  J,  Yang  M,  Duan  Y.  Chemistry,  biology,  and  medicine  of   enhancement of two-photon absorption in dendrimers[J]. Journal of
                 fluorescent  nanomaterials  and  related  systems:  new  insights  into   Physical Chemistry B, 2003, 107(31): 7540-7543.
                 biosensing,  bioimaging,  genomics,  diagnostics,  and  therapy[J].   [26]  Duan  X  F,  Zeng  J,  Lü  J  W,  et al.  Insights  into  the  general  and
                 Chemical Reviews, 2014, 114(12): 6130-6178.       efficient  cross  mcmurry  reactions  between  ketones[J].  Journal  of
            [10]    Li  J,  Ma  C,  Tang  J,  et al.  Novel  starburst  molecule  as  a  hole   Organic Chemistry, 2006, 71(26): 9873-9876.
                 injecting  and  transporting  material  for  organic  light-emitting   [27]  Hu  R,  Lager  E,  Aguilar-Aguilar  A,  et al.  Twisted  intramolecular
                 devices[J]. Chemistry of Materials, 2005, 17(3): 615-619.   charge  transfer  and  aggregation  induced  emission  of  BODIPY
            [11]  Ghale  G,  Nau  W  M.  Dynamically  analyte-responsive  macrocyclic   derivatives[J]. Journal of Physical Chemistry C, 2009, 113(36): 15845.
   46   47   48   49   50   51   52   53   54   55   56