Page 187 - 201903
P. 187
第 3 期 苏 瑜,等: 衣康酸酯类聚羧酸系减水剂的制备及表征 ·533·
(IAPEG)、AA、MA 和 MAS 为原料、过硫酸铵为 2014, 12: 105-110.
引发剂,经水溶液聚合合成出一种聚羧酸系减水剂。 [5] Li Chongzhi (李崇智), Feng Naiqian (冯乃谦), Niu Quanlin (牛全
林). Model for molecular structure of polycarboxylic scid type
得出最佳反应条件为:单体的物质的量比为 n water-reducer and its high performance designing[J]. Journal of
(IAPEG)∶n(MA)∶n(AA)∶n(MAS)=1.5∶ Building Materials (建筑材料学报), 2004, 7(2): 194-201.
4.0∶6.0∶3.0,引发剂用量为单体总质量的 10%, [6] He Yan (何燕), Zhang Xiong (张雄), Zhang Yongjuan (张永娟), et
al. Adsorption and dispersing capability of polycarboxylate
反应时间 5 h,反应温度 80 ℃。 superplasticizers with various functional groups[J]. Journal of Tongji
(2)采用红外光谱表征聚合产物的结构,表明 University (Natural Science) (同济大学学报: 自然科学版), 2017,
聚合产物含有预先设计的羟基、酯基、羧基、聚醚 45(2): 244-248.
[7] Wang X, Ran Q, Shu X. Impact of molecular weight of block
长侧链、磺酸基等基团,说明聚合产物即为目标产 polycarboxylate superplasticisers on the dispersion of cement
物;采用 GPC 表征聚合产物的相对分子质量及其分 paste[J]. Advances in Cement Research, 2016, 28(6): 1-7.
布,证明产物为长侧链短主链的聚合物;聚合产物 [8] Yang Chunhui (杨春晖), Li Piwu (李丕武). The pressure of
development and research on the application of itaconic acid[J].
可使溶液表面张力下降,有助于降低“水泥-水”界
Shandong Food Fermentation (山东食品发酵), 2009, 153(2): 18-20.
面张力,促进水泥颗粒的分散。 [9] He Minchao (何敏超), Zhang Yu (张宇), Xu Jingliang (许敬亮), et
(3)自制的减水剂具有良好的应用性能,添加 al. Current situation and future development of itaconic acid
production[J]. China Brewing (中国酿造), 2012. 31(11): 8-11.
减水剂(添加量 0.5% )的水泥净浆流动度为
[10] Plank J, Pöllmann K, Zouaoui N, et al. Synthesis and performance of
247 mm,随着时间的增加,流动度增加,2 h 后的 methacrylic ester based polycarboxylate superplasticizers possessing
水泥净浆流动度可达 264 mm。添加减水剂的混凝土 hydroxy terminated poly(ethylene glycol) side chains[J]. Cement and
Concrete Research, 2008, 38: 1210-1216.
减水率为 39.2%,7 d 和 28 d 的混凝土抗压强度比分
[11] Zhang Jianfeng (张建锋), Wang Jiafeng (王家丰), Song Yongliang
别为 191.4%和 154.7%。 ( 宋永良 ), et al. A multi-branched chain polycarboxylate type
superplasticizer with excellent slump retention performance and a
参考文献: preparation method thereof: CN201010185714. 6[P]. 2010-10-06.
[12] Su Yu (苏瑜), Pang Hao (庞浩), Wang Bin (王斌), et al. A new
[1] Wang Ziming (王子明). High performance polycarboxylate type
polycarboxylate type superplasticizers—Preparation and characterization
superplasticizer-preparation, properties and applications[M]. Beijing:
of macromonomer[J]. Fine Chemicals (精细化工), 2012, 29(2):
China Architecture & Building Press (中国建筑工业出版社), 2009:
1-5. 187-191.
[2] Yan Handong (严捍东), Zhong Guocai (钟国才). Research status [13] Yamada, Takahashi, Hanehara, et al. Effect of the chemical structure
and development direction of polycarboxylate superplasticizer[J]. on the properties of polycarboxylate-type superplasticizer[J]. Cement
Journal of Guizhou University (Natural Sciences) (贵州大学学报: and Concrete Research, 2000, 30: 197-207.
自然科学版), 2017, 34(1): 23-28. [14] Plank J, Winter Ch. Competitive adsorption between superplasticizer
[3] Uchikawa, Hanehara, Sawaki. The role of steric repulsive force in the and retarder molecules on mineral binder surface[J]. Cement and
dispersion of cement particles in fresh paste prepared with organic Concrete Research, 2008, 38: 599-605.
admixture[J]. Cement and Concrete Research, 1997, 27(1): 37-50. [15] Jiang Yu (姜玉), Pang Hao (庞浩), Liao Bing (廖兵). Study of
[4] Yuan Jingzhe (袁靖喆), Du Zhiguang (杜治光), Pan Lisha (潘莉莎), polycarboxylate-type superplasticizer with poly(ethylene oxide) graft
et al. Present study on structural effects of properties of high chains[J]. Chemical Industry and Engineering Progress (化工进展),
efficiency polycarboxylate superplasticizer[J]. Concrete (混凝土), 2008, 27(5): 733-735.
(上接第 526 页) controlling particle size in dispersion polymerization[J]. Journal of
Applied Polymer Science, 2008, 108(6): 4096-4107.
[13] Standardization Research Institute of Petroleum Industry. Field test [18] Liu Wang (刘旺). Preparation of raspberry-like particles by two step
of drilling fluid for petroleum and gas industry second parts: dispersion polymerization[D]. Beijing: Beijing University of
oil-based drilling fluid: GB/T16783. 2-2012 [S]. 2012-12-31. Chemical Technology (北京化工大学), 2015.
[14] Cao J, Meng L, Yang Y, et al. Novel acrylamide/2-acrylamide- [19] Huang Qishan (黄岐善), Weng Zhixue (翁志学), Huang Zhiming
2-methylpropanesulfonic acid/4-vinylpyridine terpolymer as an (黄志明), et al. Microscopickinetic interpretation for "cage effect" of
anti-calcium contamination fluid-loss additive for water-based initiator[J]. Chemical Journal of Chinese Universities (高等学校化
drilling fluids[J]. Energy & Fuels, 2017, 31(11): 11963-11970. 学学报), 1999,20(5): 160-164.
[15] Ma Xiping (马喜平), Zhou Youzhen (周有祯), Han Guotong (韩国 [20] Huang Qishan (黄岐善), Liu Qing (刘青), Weng Zhixue (翁志学),
彤), et al. Synthesis and performance evaluation of a fluid loss et al. The effect of diffusion on radical polymerization[J]. Polymer
additive for drilling fluid[J]. Fine Chemicals (精细化工), 2015, Bulletin (高分子通报), 2001, (6): 66-71.
32(7): 799-805. [21] Fang Zhaowei (房兆伟). The preparation and application of network
[16] Chen Lin (陈林), Shi Tieyun (史铁钧). Synthesis of temperature and cationic polacrylamide[D]. Nanjing: Nanjing Forestry University (南
salt tolerate flooding acrylamide-sodium styrene sulfonate copolymer 京林业大学), 2009.
by dispersion copolymerization[J]. Petrochemical Technology (石油 [22] Bhatt P A, Pratap A, Jha P K. Study of size-dependent glass transition
化工), 2011(4): 419-424. and Kauzmann temperatures of tin dioxide nanoparticles[J]. Journal of
[17] Jiang S, Sudol E D, Dimonie V L, et al. Seeding as a means of Thermal Analysis and Calorimetry, 2012, 110(2): 535-538.