Page 194 - 201904
P. 194
·720· 精细化工 FINE CHEMICALS 第 36 卷
evaluation of the antioxidant activities of polysaccharides extracted [26] Zhu Z Y, Liu F, Gao H, et al. Synthesis, characterization and
from Qingzhuan brick tea[J]. International Journal of Biological antioxidant activity of selenium polysaccharide from Cordyceps
Macromolecules, 2017, 101(3): 768-775. militaris[J]. International Journal of Biological Macromolecules,
[20] Hemalatha P, Bomzan D P, Sathyendra Rao B V, et al. Distribution of 2016, 93(9): 1090-1099.
phenolic antioxidants in whole and milled fractions of quinoa and [27] Li Q, Wang W, Zhu Y, et al. Structural elucidation and antioxidant
their inhibitory effects on α-amylase and α-glucosidase activities[J]. activity a novel Se-polysaccharide from Se-enriched Grifola
Food Chemistry, 2016, 199(23): 330-338. frondosa[J]. Carbohydrate Polymers, 2017, 161(7): 42-52.
[21] He M, Zeng J, Zhai L, et al. Effect of in vitro simulated [28] Zavastin D E, Biliută G, Dodi G, et al. Metal content and crude
gastrointestinal digestion on polyphenol and polysaccharide content polysaccharide characterization of selected mushrooms growing in
and their biological activites among 22 fruit juices[J]. Food Research Romania[J]. Journal of Food Composition and Analysis, 2018, 67(2):
International, 2017, 102(10): 156-162. 149-158.
[22] Zhao L Y, Dong Y H, Chen G T, et al. Extraction, purification, [29] Şöhretoğlu D, Sari S, Barut B, et al. Discovery of potent
characterization and antitumor activity of polysaccharides from α-glucosidase inhibitor flavonols: insights into mechanism of action
Ganoderma lucidum[J]. Carbohydrate Polymers, 2010, 80(3): through inhibition kinetics and docking simulations[J]. Bioorganic
783-789. Chemistry, 2018, 79(5): 257-264.
[23] Wang Wenjun (王文君), Xiang Canhui (向灿辉), Liu Chenghong (刘 [30] Zhang B W, Xing Y, Wen C, et al. Pentacyclic triterpenes as
成红). Extraction and properties analysis of total flavonoids of α-glucosidase and α-amylase inhibitors: structure-
Rhizoma polygonati[J]. Food Industy (食品工业), 2014, 35(10): activityrelationships and the synergism with acarbose[J]. Bioorganic
258-262. & Medicinal Chemistry Letters, 2017, 27(22): 5065-5070.
[24] Nitta Y, Kim B S, Nishinari K, et al. Synergistic gel formation of [31] Chen Xingrong (陈兴荣), Wang Chengjun (王成军), Lai Yong (赖
xyloglucan/gellan mixtures as studied by rheology, DSC, and 泳). Preliminary study on acute toxicity and pharmacodynamics of
circulardichroism[J]. Biomacromolecules, 2003, 4(6): 1654-1660. compound Polygonatum kingjanttm extract[J]. Yunnan Journal of
[25] Huang Fei (黄菲), Zhang Ruifen (张瑞芬), Liu Huijuan (刘慧娟), Traditional Chinese Medicine and Materia Medica (云南中医中药杂
et al. Study on the solution properties of polysaccharide fractions 志), 2010, 31(1): 59-60.
from litchi pulp[J]. Journal of Food Safety and Quality (食品安全质 [32] Sun B, Yu S, Zhao D, et al. Polysaccharides as vaccine adjuvants[J].
量检测学报), 2015, 6(5): 1770-1775. Vaccine, 2018, 36(35): 5226-5234.
(上接第 676 页) [27] Yan Z X, Xu Z H, Yu J G, et al. Highly active mesoporous
ferrihydrite supported Pt catalyst for formaldehyde removal at room
[19] Nie L H, Meng A Y, Yu J G, et al. Hierarchically macro-mesoporous
temperature[J]. Environmental Science Technology, 2015, 49(11):
Pt/Al 2O 3 composite microspheres for efficient formaldehyde
6637-6644.
oxidation at room temperature[J]. Scientific Reports, 2013, 3215:
[28] Qiao B T, Wang A Q, Li L, et al. Ferric oxide-supported Pt
1-7.
subnanoclusters for preferential oxidation of CO in H 2-rich gas at
[20] Nie L H, Meng A Y, Teng F, et al. Hierarchically macro-mesoporous
room temperature[J]. Acs Catalysis, 2014, 4(7): 2113-2117.
flowerlike Pt/NiO composite microspheres for efficient formaldehyde
[29] An N H, Li S Y, Duchesne P N, et al. Size effects of platinum colloid
oxidation at room temperature[J]. RSC Advances, 2015, 5: 83997-
particles on the structure and CO oxidation properties of supported
84003.
Pt/Fe 2O 3 catalysts[J]. Journal of Physical Chemistry C, 2013,
[21] Liu L Q, Zhou F, Wang L G, et al. Low-temperature CO oxidation
117(41): 21254-21262.
over supported Pt, Pd catalysts: particular role of FeO x support for
[30] Jambor J L, Dutrizac J E. Occurrence and constitution of natural and
oxygen supply during reactions[J]. Journal of Catalysis, 2010,
synthetic ferrihydrite, a widespread iron oxyhydroxide[J]. Chemical
274(1): 1-10.
Reviews, 1998, 98(7): 2549-2585.
[22] Nagai Y, Hirabayashi T, Dohmae K, et al. Sintering inhibition
[31] Parker S F, The role of hydroxyl groups in low temperature carbon
mechanism of platinum supported on ceria-based oxide and Pt-
monoxide oxidation[J]. Chemical Communications, 2011, 47(7):
oxide-support interaction[J]. Journal of Catalysis, 2006, 242(1): 103-
1988-1990.
109.
[32] Chen B B, Zhu X B, Crocker M, et al. FeO x-supported gold catalysts
[23] Ferreira A P, Zanchet D, Araújo J C S, et al. The effects of CeO 2 on
for catalytic removal of formaldehyde at room temperature[J].
the activity and stability of Pt supported catalysts for methane
reforming, as addressed by in situ temperature resolved XAFS and Applied Catalysis B: Environmental, 2014, 154/155(1): 73-81.
TEM analysis [J]. Journal of Catalysis, 2009, 263(2): 335-344. [33] Chen G X, Zhao Y, Fu G, et al. Interfacial effects in iron-nickel
[24] LiS Y, Liu G, Lian H L, et al. Low-temperature CO oxidation over hydroxide–platinum nanoparticles enhance catalytic oxidation[J].
supported Pt catalysts prepared by colloid-deposition method[J]. Science, 2014, 344: 495-499.
Catalysis Communications, 2008, 9(6): 1045-1049. [34] Dong W K, Seo P W, Kim G J, et al. Characteristics of the HCHO
[25] Zheng B, Liu G, Geng L L et al. Role of the FeO x support in oxidation reaction over Pt/TiO 2 catalysts at room temperature: The
constructing high-performance Pt/FeO x catalysts for low-temperature effect of relative humidity on catalytic activity[J]. Applied Catalysis
CO oxidation[J]. Catalysis Science Technology, 2016, 6(5): 1546-1554. B: Environmental, 2015, 163: 436-443.
[26] Qi L F, Cheng B, Yu J G, et al. High-surface area mesoporous Pt/TiO 2 [35] Chen B B, Zhu C B, Crocker M, et al. Complete oxidation of
hollow chains for efficient formaldehyde composition at ambient formaldehyde at ambient temperature over γ-Al 2O 3 supported Au
temperature[J]. Journal of Hazardous Materials, 2016, 301: 522–530. catalyst[J]. Catalysis Communications, 2013, 42(42): 93-97.