Page 55 - 201904
P. 55

第 4 期                     郑   娟,等:  纳米碳化钒/碳化铬的微波辅助合成及应用                                  ·581·


            3   结论                                             [10]  Wang  X  G,  Liu  J  X,  Kan  Y  M,  et al.  Effect of  solid solution
                                                                   formation  on  densification  of  hot-pressed  ZrC  ceramics  with  MC
                                                                   (M = V, Nb, and Ta) additions[J]. Journal of the European Ceramic
                 以微米级 V 2 O 5 、Cr 2 O 3 和纳米碳黑为原料,采
                                                                   Society, 2012, 32(8): 1795-1802.
            用机械合金化及微波辅助加热法,在 900  ℃、1  h                       [11]  Nouvellon  C,  Belchi  R,  Libralesso  L,  et al.  WC/C:  H  films
            条件下,可以制备由 V 3 Cr 2 C 5 、Cr 2 VC 2 和 Cr 3 C 2 组成        synthesized  by  an  hybrid  reactive  magnetron  sputtering/Plasma
                                                                   Enhanced Chemical Vapor Deposition process: An alternative to Cr
            的纳米 VC/Cr 3 C 2 复合粉末。复合粉末的颗粒呈球形                        (VI) based hard chromium plating[J]. Thin Solid Films, 2017, 630:
            或类球形,平均颗粒尺寸在 50  nm 左右,分散性较                            79-85.
                                                    2
            好,复合粉末具有较高的比表面积(115.53 m /g)。                      [12]  Mohammadzadeh H, Rezaie H, Samim H, et al. Synthesis of WC–Ni
                                                                   composite powders by thermochemical processing method based on
            与传统制备方法相比,采用该方法可以降低反应温                                 co-precipitation[J].  Materials  Chemistry  &  Physics,  2015,  149/150:
            度 600~700  ℃,并且粉末具有更细的颗粒尺寸、更                           145-155.
                                                               [13]  Yang Z Z, Fu X M. Preparation technology and latest development of
            高的比表面积和更好的分散性。                                         nano  WC-Co  powder[J].  China  Tungsten  Industry,  2010,  25(6):
                 添加质量分数为 4.0%纳米 VC/Cr 3 C 2 复合粉末                   35-37, 40.
            后,磨具试样条的抗折强度和洛氏硬度分别提高了                             [14]  Bao R, Yi J H, Peng Y D, et al. Decarburization and improvement of
                                                                   ultra  fine  straight  WC-8Co  sintered  via  microwave  sintering[J].
            4.6%和 9.3%。磨具试样的磨削比提高了 26.0%,平                         Transactions  of  Nonferrous  Metals  Society  of  China,  2012,  22(4):
            均摩擦系数降低了 38.4%。显著提高了陶瓷结合剂                              853-857.
                                                               [15]  Suryanarayana  C.  Mechanical  alloying  and  milling[M].  New  York:
            cBN 磨具的磨削效率,并且对磨具具有减摩作用,
                                                                   Marcel-Dekker, 2004: 331-333.
            降低了磨具的损耗。                                          [16]  Tang S, Liu D, Li P, et al. Microstructure and mechanical properties
                 该复合粉末可以显著改善陶瓷结合剂 cBN 磨具                           of functionally gradient cemented carbides fabricated by microwave
                                                                   heating  nitriding  sintering[J].  International  Journal  of  Refractory
            的力学性能和磨削效率,能否有效抑制超细(纳米)                                Metals & Hard Materials, 2016, 58: 137-142.
            硬质合金中 WC 晶粒的异常长大并提高合金综合性                           [17]  Bao  R,  Yi  J.  Densification  and  alloying  of  microwave  sintering
            能是下一步的研究重点。                                            WC–8  wt.%  Co  composites[J].  International  Journal  of  Refractory
                                                                   Metals & Hard Materials, 2014, 43(12): 269-275.
                                                               [18]  Wang  Jue  (王珏),  Wen  Zhigang  (文志刚), Cao  Maoqi (曹茂启).
            参考文献:                                                  Preparation  and  electrochemical  properties  of  irregular  flower-like
            [1]   Jin  Y,  Huang  B,  Liu  C,  et al.  Phase  evolution  in  the  synthesis  of   Co 3O 4  microspheres  by  microwave  assisted  method[J].  Fine
                 WC–Co–Cr 3C 2–VC  nanocomposite  powders  from  precursors[J].   Chemicals (精细化工), 2018, 35(4): 658-661.
                 International Journal of Refractory Metals & Hard Materials, 2013,   [19]  Bao R, Yi J, Zhang H, et al. A research on WC–8Co preparation by
                 41(3): 169-173.                                   microwave sintering[J]. International Journal of Refractory Metals &
            [2]   Sun  Z,  Ahuja  R,  Lowther  J  E.  Mechanical  properties  of  vanadium   Hard Materials, 2012, 32(5): 16-20.
                 carbide  and  a  ternary  vanadium  tungsten  carbide[J].  Solid  State   [20]  Laptiev  A,  Pakiela  Z,  Tolochyn  O,  et al.  Microstructure  and
                 Communications, 2010, 150(15/16): 697-700.        mechanical  properties  of  WC-40Co  composite  obtained  by  impact
            [3]   Sun J, Zhao J, Li Z, et al. Effects of initial particle size distribution   sintering  in  solid  state[J].  Journal  of  Alloys  &  Compounds,  2016,
                 and sintering parameter on microstructure and mechanical properties   687: 135-142.
                 of functionally graded WC-TiC-VC-Cr 3C 2-Co hard alloys[J]. Ceramics   [21]  Zhang  B,  Li  Z  Q.  Synthesis  of  vanadium  carbide  by  mechanical
                 International, 2017, 43(2): 2686-2696.            alloying[J]. Journal of Alloys & Compounds, 2005, 392(1/2): 183-186.
            [4]   Kim H C, Shon I J, Jeong I K, et al. Rapid sintering of ultra fine WC   [22]  Gomari S, Sharafi S. Microstructural characterization of nanocrystalline
                 and  WC-Co  hard  materials  by  high-frequency  induction  heated   chromium  carbides  synthesized  by  high  energy  ball  milling[J].
                 sintering  and  their  mechanical  properties[J].  Metals  &  Materials   Journal of Alloys & Compounds, 2010, 490(1/2): 26-30.
                 International, 2007, 13(1): 39-45.            [23]  Suryanarayana  C.  Mechanical  alloying  and  milling[J].  Progress  in
            [5]   Wang  S  C,  Lin  H  T,  Nayak  P  K,  et al.  Carbothermal  reduction   Materials Science, 2006, 46(1): 1-184.
                 process for synthesis of nanosized chromium carbide via metal-organic   [24]  Hewitt S A, Kibble K A. Effects of ball milling time on the synthesis
                 vapor deposition[J]. Thin Solid Films, 2010, 518(24): 7360-7365.     and consolidation of nanostructured WC–Co composites[J]. International
            [6]   Wang Xuezheng (王学政), Wang Haibin (王海滨), Liu Xuemei (刘  Journal  of  Refractory  Metals  &  Hard  Materials,  2009,  27(6):  937-
                 雪梅), et al. Grain growth inhibitor on the WC-Co cemented carbide   948.
                 coating[J].  Journal  of  Inorganic  Materials(无机材料学报),  2017,   [25]  Tang S, Liu D, Li P, et al. Microstructure and mechanical properties
                 32(8): 813-818.                                   of functionally gradient cemented carbides fabricated by microwave
            [7]   Guo  W, Li  K, Du  Y,  et al.  Microstructure  and  composition  of   heating  nitriding  sintering[J].  International  Journal  of  Refractory
                 segregation layers at WC/Co interfaces in ultrafine-grained cemented   Metals & Hard Materials, 2016, 58: 137-142.
                 carbides co-doped with Cr and V[J]. International Journal of Refractory   [26]  Zhao Z. Synthesis of V 8C 7–Cr 3C 2, nanocomposite via a novel in-situ
                 Metals & Hard Materials, 2016, 58: 68-73.         precursor  method[J].  International  Journal  of  Refractory  Metals &
            [8]   Zhang  Li  (张立),  Wu  Chonghu  (吴冲浒),  Chen  Shu  (陈述),  et al.   Hard Materials, 2016, 56: 118-122.
                 Micro-behaviors of grain growth inhibitors in cemented carbides[J].   [27]  Cheng  J  P,  Agrawal  D,  Zhang  Y  J,  et al.  Fabricating  transparent
                 Materials Science and Engineering of Powder Metallurgy (粉末冶金  ceramics  by  microwave  sintering[J].  American  Ceramic  Society
                 材料科学与工程), 2010, 15(6): 667-673.                   Bulletin, 2000, 79(9): 71-74.
            [9]   Zhao  Z.  Microwave-assisted  synthesis  of  vanadium  and  chromium   [28]  Oye  G,  Sjoblom  J,  Stocker  M.  Synthesis,  characterization  and
                 carbides  nanocomposite  and  its  effect  on  properties  of  WC-8Co   potential applications of new materials in the mesoporous range[J].
                 cemented carbides[J]. Scripta Materialia, 2016, 120: 103-106.     Advances in Colloid and Interface Science, 2001, 89/90: 439-466.
   50   51   52   53   54   55   56   57   58   59   60