Page 55 - 201904
P. 55
第 4 期 郑 娟,等: 纳米碳化钒/碳化铬的微波辅助合成及应用 ·581·
3 结论 [10] Wang X G, Liu J X, Kan Y M, et al. Effect of solid solution
formation on densification of hot-pressed ZrC ceramics with MC
(M = V, Nb, and Ta) additions[J]. Journal of the European Ceramic
以微米级 V 2 O 5 、Cr 2 O 3 和纳米碳黑为原料,采
Society, 2012, 32(8): 1795-1802.
用机械合金化及微波辅助加热法,在 900 ℃、1 h [11] Nouvellon C, Belchi R, Libralesso L, et al. WC/C: H films
条件下,可以制备由 V 3 Cr 2 C 5 、Cr 2 VC 2 和 Cr 3 C 2 组成 synthesized by an hybrid reactive magnetron sputtering/Plasma
Enhanced Chemical Vapor Deposition process: An alternative to Cr
的纳米 VC/Cr 3 C 2 复合粉末。复合粉末的颗粒呈球形 (VI) based hard chromium plating[J]. Thin Solid Films, 2017, 630:
或类球形,平均颗粒尺寸在 50 nm 左右,分散性较 79-85.
2
好,复合粉末具有较高的比表面积(115.53 m /g)。 [12] Mohammadzadeh H, Rezaie H, Samim H, et al. Synthesis of WC–Ni
composite powders by thermochemical processing method based on
与传统制备方法相比,采用该方法可以降低反应温 co-precipitation[J]. Materials Chemistry & Physics, 2015, 149/150:
度 600~700 ℃,并且粉末具有更细的颗粒尺寸、更 145-155.
[13] Yang Z Z, Fu X M. Preparation technology and latest development of
高的比表面积和更好的分散性。 nano WC-Co powder[J]. China Tungsten Industry, 2010, 25(6):
添加质量分数为 4.0%纳米 VC/Cr 3 C 2 复合粉末 35-37, 40.
后,磨具试样条的抗折强度和洛氏硬度分别提高了 [14] Bao R, Yi J H, Peng Y D, et al. Decarburization and improvement of
ultra fine straight WC-8Co sintered via microwave sintering[J].
4.6%和 9.3%。磨具试样的磨削比提高了 26.0%,平 Transactions of Nonferrous Metals Society of China, 2012, 22(4):
均摩擦系数降低了 38.4%。显著提高了陶瓷结合剂 853-857.
[15] Suryanarayana C. Mechanical alloying and milling[M]. New York:
cBN 磨具的磨削效率,并且对磨具具有减摩作用,
Marcel-Dekker, 2004: 331-333.
降低了磨具的损耗。 [16] Tang S, Liu D, Li P, et al. Microstructure and mechanical properties
该复合粉末可以显著改善陶瓷结合剂 cBN 磨具 of functionally gradient cemented carbides fabricated by microwave
heating nitriding sintering[J]. International Journal of Refractory
的力学性能和磨削效率,能否有效抑制超细(纳米) Metals & Hard Materials, 2016, 58: 137-142.
硬质合金中 WC 晶粒的异常长大并提高合金综合性 [17] Bao R, Yi J. Densification and alloying of microwave sintering
能是下一步的研究重点。 WC–8 wt.% Co composites[J]. International Journal of Refractory
Metals & Hard Materials, 2014, 43(12): 269-275.
[18] Wang Jue (王珏), Wen Zhigang (文志刚), Cao Maoqi (曹茂启).
参考文献: Preparation and electrochemical properties of irregular flower-like
[1] Jin Y, Huang B, Liu C, et al. Phase evolution in the synthesis of Co 3O 4 microspheres by microwave assisted method[J]. Fine
WC–Co–Cr 3C 2–VC nanocomposite powders from precursors[J]. Chemicals (精细化工), 2018, 35(4): 658-661.
International Journal of Refractory Metals & Hard Materials, 2013, [19] Bao R, Yi J, Zhang H, et al. A research on WC–8Co preparation by
41(3): 169-173. microwave sintering[J]. International Journal of Refractory Metals &
[2] Sun Z, Ahuja R, Lowther J E. Mechanical properties of vanadium Hard Materials, 2012, 32(5): 16-20.
carbide and a ternary vanadium tungsten carbide[J]. Solid State [20] Laptiev A, Pakiela Z, Tolochyn O, et al. Microstructure and
Communications, 2010, 150(15/16): 697-700. mechanical properties of WC-40Co composite obtained by impact
[3] Sun J, Zhao J, Li Z, et al. Effects of initial particle size distribution sintering in solid state[J]. Journal of Alloys & Compounds, 2016,
and sintering parameter on microstructure and mechanical properties 687: 135-142.
of functionally graded WC-TiC-VC-Cr 3C 2-Co hard alloys[J]. Ceramics [21] Zhang B, Li Z Q. Synthesis of vanadium carbide by mechanical
International, 2017, 43(2): 2686-2696. alloying[J]. Journal of Alloys & Compounds, 2005, 392(1/2): 183-186.
[4] Kim H C, Shon I J, Jeong I K, et al. Rapid sintering of ultra fine WC [22] Gomari S, Sharafi S. Microstructural characterization of nanocrystalline
and WC-Co hard materials by high-frequency induction heated chromium carbides synthesized by high energy ball milling[J].
sintering and their mechanical properties[J]. Metals & Materials Journal of Alloys & Compounds, 2010, 490(1/2): 26-30.
International, 2007, 13(1): 39-45. [23] Suryanarayana C. Mechanical alloying and milling[J]. Progress in
[5] Wang S C, Lin H T, Nayak P K, et al. Carbothermal reduction Materials Science, 2006, 46(1): 1-184.
process for synthesis of nanosized chromium carbide via metal-organic [24] Hewitt S A, Kibble K A. Effects of ball milling time on the synthesis
vapor deposition[J]. Thin Solid Films, 2010, 518(24): 7360-7365. and consolidation of nanostructured WC–Co composites[J]. International
[6] Wang Xuezheng (王学政), Wang Haibin (王海滨), Liu Xuemei (刘 Journal of Refractory Metals & Hard Materials, 2009, 27(6): 937-
雪梅), et al. Grain growth inhibitor on the WC-Co cemented carbide 948.
coating[J]. Journal of Inorganic Materials(无机材料学报), 2017, [25] Tang S, Liu D, Li P, et al. Microstructure and mechanical properties
32(8): 813-818. of functionally gradient cemented carbides fabricated by microwave
[7] Guo W, Li K, Du Y, et al. Microstructure and composition of heating nitriding sintering[J]. International Journal of Refractory
segregation layers at WC/Co interfaces in ultrafine-grained cemented Metals & Hard Materials, 2016, 58: 137-142.
carbides co-doped with Cr and V[J]. International Journal of Refractory [26] Zhao Z. Synthesis of V 8C 7–Cr 3C 2, nanocomposite via a novel in-situ
Metals & Hard Materials, 2016, 58: 68-73. precursor method[J]. International Journal of Refractory Metals &
[8] Zhang Li (张立), Wu Chonghu (吴冲浒), Chen Shu (陈述), et al. Hard Materials, 2016, 56: 118-122.
Micro-behaviors of grain growth inhibitors in cemented carbides[J]. [27] Cheng J P, Agrawal D, Zhang Y J, et al. Fabricating transparent
Materials Science and Engineering of Powder Metallurgy (粉末冶金 ceramics by microwave sintering[J]. American Ceramic Society
材料科学与工程), 2010, 15(6): 667-673. Bulletin, 2000, 79(9): 71-74.
[9] Zhao Z. Microwave-assisted synthesis of vanadium and chromium [28] Oye G, Sjoblom J, Stocker M. Synthesis, characterization and
carbides nanocomposite and its effect on properties of WC-8Co potential applications of new materials in the mesoporous range[J].
cemented carbides[J]. Scripta Materialia, 2016, 120: 103-106. Advances in Colloid and Interface Science, 2001, 89/90: 439-466.