Page 109 - 精细化工2019年第8期
P. 109

第 8 期                     杨莎莎,等:  壳聚糖基固体酸催化果糖合成 5-羟甲基糠醛                                 ·1597·


                                                                   SBA-15 catalyst[J]. Composites Part B: Engineering, 2019, 156: 88-94.
                                                               [8]   Hara M, Yoshida T, Takagaki A, et al. A carbon material as a strong
                                                                   protonic  acid[J].  Angewandte  Chemie  International  Edition,  2004,
                                                                   43: 2955-2958.
                                                               [9]   Kitanosono T, Masuda K, Xu P, et al. Catalytic organic reactions in
                                                                   water  toward  sustainable  society[J].  Chemical  Reviews,  2018,
                                                                   118(2): 679-746.
                                                               [10]  Zhang  J,  Yang  S,  Zhang  Z,  et al.  An  excellent  solid  acid  catalyst
                                                                   derived  from  microalgae  residue  for  fructose  dehydration  into
                                                                   5-hydroxymethylfurural[J]. Chemistry Select, 2019, 4(4): 1259-1265.
                                                               [11]  Gan  L,  Lyu  L,  Shen  T,  et al.  Sulfonated  lignin-derived  ordered
                                                                   mesoporous carbon with highly selective and recyclable catalysis for
                                                                   the conversion of fructose into 5-hydroxymethylfurfural[J]. Applied
                                                                   Catalysis A: General, 2019, 574: 132-143.

                   图 13    回收 CASA 催化剂的 FTIR 谱图                [12]  Cheng Lu (程璐), Xie Xiang (谢翔), Jia Jin (贾进), et al. Research
                                                                   on whitening and antisenility efficacy of saponins from sea cucumber
              Fig. 13    FTIR spectrum of the recycled CASA catalyst   cooking water[J]. Fine Chemicals (精细化工), 2018, 35(2): 267-271.

                                                               [13]  Yu H, Kim K, Kang M J, et al. Carbon support with tunable porosity
            3    结论                                                prepared  by  carbonizing  chitosan  for  catalytic  oxidation  of
                                                                   5-hydroxylmethylfurfural[J].  ACS  Sustainable  Chemistry  &
                                                                   Engineering, 2019, 7(4): 3742-3748.
                (1)以壳聚糖为原料、通过一步水热碳化和磺                          [14]  Suganuma S, Nakajima K, Kitano M, et al. Hydrolysis of cellulose
                                                                   by  amorphous  carbon  bearing  SO 3H,  COOH,  and  OH  groups[J].
            化法制得 CASA 材料,并用 XRD、SEM、Py-FTIR、                       Journal of the American Chemical Society, 2008, 130(38): 12787-12793.
            XPS 对其进行了结构和酸性质表征,结果表明:                            [15]  Shaikh M, Sahu M, Atyam K K, et al. Surface modification of ferrite
                                                                   nanoparticles  with  dicarboxylic  acids  for  the  synthesis  of
            CASA 材料表面存在大量的强 B 酸位,是脱水反应                             5-hydroxymethylfurfural: A novel and green protocol[J]. RSC Advances,
            潜在的绿色、高效固体酸催化剂。                                        2016, 6(80): 76795-76801.
                                                               [16]  Wang J, Xu W, Ren J, et al. Efficient catalytic conversion of fruc tose
                (2)将 CASA 材料用于果糖无溶剂脱水合成                            into  hydroxymethylfurfural  by  a  novel  carbon-based  solid  acid[J].
            5-HMF 反应中,发现当 m(果糖)∶m(CASA)=6∶1、                       Green Chemistry, 2011, 13(10): 2678-2681.
                                                               [17]  Foo  G  S,  Sievers  C.  Synergistic  effect  between  defect  sites  and
            反应温度为 120 ℃、反应时间为 5  h 时,CASA 材                        functional  groups  on  the  hydrolysis  of  cellulose  over  activated
            料的催化活性最好,5-HMF 收率和选择性分别为                               carbon[J]. Chem Sus Chem, 2015, 8(3): 534-543.
                                                               [18]  Guo  H,  Lian  Y,  Yan  L,  et al.  Cellulose-derived  superparamagnetic
            63.2%和 78.9%;CASA 催化剂经历 4 次循环利用,                       carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic
            其活性无明显降低;与 CISA 材料相比,CASA 材                            liquid or aqueous reaction system[J]. Green Chemistry, 2013, 15(8):
                                                                   2167-2174.
            料催化活性更为突出。以壳聚糖为原料合成的新型                             [19]  Qi X, Yan L, Shen F, et al. Mechanochemical-assisted hydrolysis of
            CASA 材料有望代替均相催化剂进行 5-HMF 的绿                            pretreated  rice  straw  into  glucose  and  xylose  in  water  by  weakly
                                                                   acidic solid catalyst[J]. Bioresource Technology, 2019, 273: 687-691.
            色、高效合成,并具有用于其他生物质平台化合物                             [20]  Rihko-Struckmann L K, Molnar M, Pirwitz K, et al. Recovery and
                                                                   separation of carbohydrate derivatives from the lipid extracted alga
            无溶剂催化合成反应中的巨大潜力。
                                                                   Dunaliella  by  mild  liquefaction[J].  ACS  Sustainable  Chemistry  &
                                                                   Engineering, 2017, 5(1): 588-595.
            参考文献:                                              [21]  Kumar  G,  Shobana  S,  Chen  W, et al.  A  review  of  thermochemical
                                                                   conversion  of  microalgal  biomass  for  biofuels:  chemistry  and
            [1]   Hayashi E, Yamaguchi Y, Kamata K, et al. Effect of MnO 2 crystal
                                                                   processes[J]. Green Chemistry, 2017, 19(1): 44-67.
                 structure  on  aerobic  oxidation  of  5-hydroxymethylfurfural  to  2,   [22]  Thapa I, Mullen B, Saleem A, et al. Efficient green catalysis for the
                 5-furandicarboxylic  acid[J].  Journal  of  the  American  Chemical   conversion  of  fructose  to  levulinic  acid[J].  Applied  Catalysis  A:
                 Society, 2019, 141(2): 890-900.
                                                                   General, 2017, 539: 70-79.
            [2]   Jia Jin (贾进), Cheng Lu (程璐), Zhang Cheng (张澄), et al. One-pot   [23]  Emeis  C  A.  Determination  of  integrated  molar  extinction  coeffi
                 catalytic  preparation  of  5-hydroxymethylfurural  from  glucose  on   cients  for  infrared  absorption  bands  of  pyridine  adsorbed  on  solid
                 mesoporous  niobium  phosphate[J].  Fine  Chemicals  (精细化工),   acid catalysts[J]. Journal of Catalysis, 1993, 141(2): 347-354.
                 2018, 35(2): 255-260.                         [24]  Thombal  R,  Jadhav  V.  Biomass  derived  β-cyclodextrin-SO 3H
            [3]   Morales-Leal F, de la Rosa J R, Lucio-Ortiz C, et al. Dehydration of   carbonaceous  solid  acid  catalyst  for  catalytic  conversion  of
                 fructose over thiol- and sulfonic- modified alumina in a continuous   carbohydrates  to  5-hydroxymethylfurfural[J].  Applied  Catalysis  A:
                 reactor for 5-HMF production: Study of catalyst stability by NMR[J].   General, 2015, 499: 213-216.
                 Applied Catalysis B: Environmental, 2019, 244: 250-261.   [25]  Qiu  G,  Wang  X,  Huang  C,  et al.  Niobium  phosphotungstates:
            [4]   Huang  F, Li  W, Liu Q,  et al.  Sulfonated  tobacco  stem  carbon  as   excellent  solid  acid  catalysts  for  the  dehydration  of  fructose  to
                 efficient  catalyst  for  dehydration  of  C6  carbohydrate  to   5-hydroxymethylfurfural  under  mild  conditions[J].  RSC  Advances,
                 5-hydroxymethylfurfural in γ-valerolactone/water[J]. Fuel Processing   2018, 8(57): 32423-32433.
                 Technology, 2018, 181: 294-303.               [26]  De  S,  Dutta  S,  Saha  B,  et al.  Microwave  assisted  conversion  of
            [5]   Cao  Z,  Li  M,  Chen  Y,  et al.  Dehydration  of  fructose  into   carbohydrates  and  biopolymers  to  5-hydroxymethylfurfural  with
                 5-hydroxymethylfurfural  in  a  biphasic  system  using  EDTA  as  a   aluminium  chloride  catalyst  in  water[J].  Green  Chemistry,  2011,
                 temperature-responsive  catalyst[J].  Applied  Catalysis  A:  General,   13(10): 2859-2868.
                 2019, 569: 93-100.                            [27]  Ordomsky  V  V,  vander  Schaaf  J,  Schouten  J  C,  et al.  Fructose
            [6]   Choudhary V, Mushrif S H, Ho C, et al. Insights into the interplay of   dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a
                 Lewis and Brønsted acid catalysts in glucose and fructose conversion   biphasic system[J]. Chem Sus Chem, 2012, 5(9): 1812-1819.
                 to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media[J].   [28]  Gaidukevič  J,  Barkauskas  J,  Malaika  A,  et al.  Modified  gra
                 Journal of the American Chemical Society, 2013, 135(10): 3997-4006.   phene-based materials as effective catalysts for transesterification of
            [7]   Wang  L,  Zhang  L,  Li  H,  et al.  High  selective  production  of   rapeseed oil to biodiesel fuel[J]. Chinese Journal of Catalysis, 2018,
                 5-hydroxymethylfurfural  from  fructose  by  sulfonic  acid  functionalized   39(10): 1633-1645.
   104   105   106   107   108   109   110   111   112   113   114