Page 109 - 精细化工2019年第8期
P. 109
第 8 期 杨莎莎,等: 壳聚糖基固体酸催化果糖合成 5-羟甲基糠醛 ·1597·
SBA-15 catalyst[J]. Composites Part B: Engineering, 2019, 156: 88-94.
[8] Hara M, Yoshida T, Takagaki A, et al. A carbon material as a strong
protonic acid[J]. Angewandte Chemie International Edition, 2004,
43: 2955-2958.
[9] Kitanosono T, Masuda K, Xu P, et al. Catalytic organic reactions in
water toward sustainable society[J]. Chemical Reviews, 2018,
118(2): 679-746.
[10] Zhang J, Yang S, Zhang Z, et al. An excellent solid acid catalyst
derived from microalgae residue for fructose dehydration into
5-hydroxymethylfurural[J]. Chemistry Select, 2019, 4(4): 1259-1265.
[11] Gan L, Lyu L, Shen T, et al. Sulfonated lignin-derived ordered
mesoporous carbon with highly selective and recyclable catalysis for
the conversion of fructose into 5-hydroxymethylfurfural[J]. Applied
Catalysis A: General, 2019, 574: 132-143.
图 13 回收 CASA 催化剂的 FTIR 谱图 [12] Cheng Lu (程璐), Xie Xiang (谢翔), Jia Jin (贾进), et al. Research
on whitening and antisenility efficacy of saponins from sea cucumber
Fig. 13 FTIR spectrum of the recycled CASA catalyst cooking water[J]. Fine Chemicals (精细化工), 2018, 35(2): 267-271.
[13] Yu H, Kim K, Kang M J, et al. Carbon support with tunable porosity
3 结论 prepared by carbonizing chitosan for catalytic oxidation of
5-hydroxylmethylfurfural[J]. ACS Sustainable Chemistry &
Engineering, 2019, 7(4): 3742-3748.
(1)以壳聚糖为原料、通过一步水热碳化和磺 [14] Suganuma S, Nakajima K, Kitano M, et al. Hydrolysis of cellulose
by amorphous carbon bearing SO 3H, COOH, and OH groups[J].
化法制得 CASA 材料,并用 XRD、SEM、Py-FTIR、 Journal of the American Chemical Society, 2008, 130(38): 12787-12793.
XPS 对其进行了结构和酸性质表征,结果表明: [15] Shaikh M, Sahu M, Atyam K K, et al. Surface modification of ferrite
nanoparticles with dicarboxylic acids for the synthesis of
CASA 材料表面存在大量的强 B 酸位,是脱水反应 5-hydroxymethylfurfural: A novel and green protocol[J]. RSC Advances,
潜在的绿色、高效固体酸催化剂。 2016, 6(80): 76795-76801.
[16] Wang J, Xu W, Ren J, et al. Efficient catalytic conversion of fruc tose
(2)将 CASA 材料用于果糖无溶剂脱水合成 into hydroxymethylfurfural by a novel carbon-based solid acid[J].
5-HMF 反应中,发现当 m(果糖)∶m(CASA)=6∶1、 Green Chemistry, 2011, 13(10): 2678-2681.
[17] Foo G S, Sievers C. Synergistic effect between defect sites and
反应温度为 120 ℃、反应时间为 5 h 时,CASA 材 functional groups on the hydrolysis of cellulose over activated
料的催化活性最好,5-HMF 收率和选择性分别为 carbon[J]. Chem Sus Chem, 2015, 8(3): 534-543.
[18] Guo H, Lian Y, Yan L, et al. Cellulose-derived superparamagnetic
63.2%和 78.9%;CASA 催化剂经历 4 次循环利用, carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic
其活性无明显降低;与 CISA 材料相比,CASA 材 liquid or aqueous reaction system[J]. Green Chemistry, 2013, 15(8):
2167-2174.
料催化活性更为突出。以壳聚糖为原料合成的新型 [19] Qi X, Yan L, Shen F, et al. Mechanochemical-assisted hydrolysis of
CASA 材料有望代替均相催化剂进行 5-HMF 的绿 pretreated rice straw into glucose and xylose in water by weakly
acidic solid catalyst[J]. Bioresource Technology, 2019, 273: 687-691.
色、高效合成,并具有用于其他生物质平台化合物 [20] Rihko-Struckmann L K, Molnar M, Pirwitz K, et al. Recovery and
separation of carbohydrate derivatives from the lipid extracted alga
无溶剂催化合成反应中的巨大潜力。
Dunaliella by mild liquefaction[J]. ACS Sustainable Chemistry &
Engineering, 2017, 5(1): 588-595.
参考文献: [21] Kumar G, Shobana S, Chen W, et al. A review of thermochemical
conversion of microalgal biomass for biofuels: chemistry and
[1] Hayashi E, Yamaguchi Y, Kamata K, et al. Effect of MnO 2 crystal
processes[J]. Green Chemistry, 2017, 19(1): 44-67.
structure on aerobic oxidation of 5-hydroxymethylfurfural to 2, [22] Thapa I, Mullen B, Saleem A, et al. Efficient green catalysis for the
5-furandicarboxylic acid[J]. Journal of the American Chemical conversion of fructose to levulinic acid[J]. Applied Catalysis A:
Society, 2019, 141(2): 890-900.
General, 2017, 539: 70-79.
[2] Jia Jin (贾进), Cheng Lu (程璐), Zhang Cheng (张澄), et al. One-pot [23] Emeis C A. Determination of integrated molar extinction coeffi
catalytic preparation of 5-hydroxymethylfurural from glucose on cients for infrared absorption bands of pyridine adsorbed on solid
mesoporous niobium phosphate[J]. Fine Chemicals (精细化工), acid catalysts[J]. Journal of Catalysis, 1993, 141(2): 347-354.
2018, 35(2): 255-260. [24] Thombal R, Jadhav V. Biomass derived β-cyclodextrin-SO 3H
[3] Morales-Leal F, de la Rosa J R, Lucio-Ortiz C, et al. Dehydration of carbonaceous solid acid catalyst for catalytic conversion of
fructose over thiol- and sulfonic- modified alumina in a continuous carbohydrates to 5-hydroxymethylfurfural[J]. Applied Catalysis A:
reactor for 5-HMF production: Study of catalyst stability by NMR[J]. General, 2015, 499: 213-216.
Applied Catalysis B: Environmental, 2019, 244: 250-261. [25] Qiu G, Wang X, Huang C, et al. Niobium phosphotungstates:
[4] Huang F, Li W, Liu Q, et al. Sulfonated tobacco stem carbon as excellent solid acid catalysts for the dehydration of fructose to
efficient catalyst for dehydration of C6 carbohydrate to 5-hydroxymethylfurfural under mild conditions[J]. RSC Advances,
5-hydroxymethylfurfural in γ-valerolactone/water[J]. Fuel Processing 2018, 8(57): 32423-32433.
Technology, 2018, 181: 294-303. [26] De S, Dutta S, Saha B, et al. Microwave assisted conversion of
[5] Cao Z, Li M, Chen Y, et al. Dehydration of fructose into carbohydrates and biopolymers to 5-hydroxymethylfurfural with
5-hydroxymethylfurfural in a biphasic system using EDTA as a aluminium chloride catalyst in water[J]. Green Chemistry, 2011,
temperature-responsive catalyst[J]. Applied Catalysis A: General, 13(10): 2859-2868.
2019, 569: 93-100. [27] Ordomsky V V, vander Schaaf J, Schouten J C, et al. Fructose
[6] Choudhary V, Mushrif S H, Ho C, et al. Insights into the interplay of dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a
Lewis and Brønsted acid catalysts in glucose and fructose conversion biphasic system[J]. Chem Sus Chem, 2012, 5(9): 1812-1819.
to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media[J]. [28] Gaidukevič J, Barkauskas J, Malaika A, et al. Modified gra
Journal of the American Chemical Society, 2013, 135(10): 3997-4006. phene-based materials as effective catalysts for transesterification of
[7] Wang L, Zhang L, Li H, et al. High selective production of rapeseed oil to biodiesel fuel[J]. Chinese Journal of Catalysis, 2018,
5-hydroxymethylfurfural from fructose by sulfonic acid functionalized 39(10): 1633-1645.