Page 145 - 精细化工2019年第8期
P. 145

第 8 期            高文桂,等:  柠檬酸溶胶-凝胶法制备 Cu-ZnO-ZrO 2 催化剂:pH 对其性能的影响                        ·1633·


                 spray-dried  Cu/ZnO/Al 2O 3 /ZrO 2 catalysts for slurry methanol   [20]  Anedda R, Cannas C, Musinu A, et al. A two-stage citric acid–sol/gel
                 synthesis  from  CO 2  hydrogenation[J].  Journal  of  CO 2  Utilization,   synthesis of ZnO/SiO 2 nanocomposites study of precursors and final
                 2016, 15: 72-82.                                  products[J]. Journal of Nanoparticle Research, 2008, 10(1): 107-120.
            [3]   Panagiotopoulou  P.  Hydrogenation  of  CO 2  over  supported  noble   [21]  Li W, Li J, Guo J. Synthesis and characterization of nanocrystalline
                 metal catalysts[J]. Applied Catalysis A: General, 2017, 542: 63-67.   CoAl 2O 4 spinel powder by low temperature combustion[J]. Journal
            [4]   Ren J, Guo H, Yang J, et al. Insights into the mechanisms of CO 2   of the European Ceramic Society, 2003, 23(13): 2289-2295.
                 methanation  on  Ni(111)  surfaces  by  density  functional  theory[J].   [22]  Nakamoto  K.  Infrared  and  Raman  spectra  of  inorganic  and
                 Applied Surface Science, 2015, 351: 504-516.      coordination compounds[M]. Sixth Edition. A John Wiley & Sons,
            [5]   Westermann  A,  Azambre  B,  Bacariza  M  C,  et al.  The  promoting   INC, Hoboken, 2009.
                 effect of Ce in the CO 2 methanation performances on NiUSY zeolite:   [23]  Cheng Pengze (程鹏泽), Gao Wengui (高文桂), Na Wei (纳薇), et
                 a FTIR in situ/operando study[J]. Catalysis Today, 2017, 283: 74-81.   al.  Influence  of  different  precipitants  on  the  properties  of
            [6]   Hartadi Y, Widmann D, Behm R J. CO 2 hydrogenation to methanol   Cu-ZnO-ZrO 2  catalyst  for  methanol  synthesis  through  CO 2
                 on supported Au catalysts under moderate reaction conditions: support   hydrogenation[J]. Chemical Industry and Engineering Progress (化工
                 and particle size effects[J]. Chemsuschem, 2015, 8(3): 456-465.   进展), 2017, 36(8): 2955-2961.
            [7]   Deerattrakul V, Dittanet P, Sawangphruk M, et al. CO 2 hydrogenation   [24]  Günter M M, Ressler T, Jentoft R E, et al. Redox behavior of copper
                 to  methanol  using  Cu-Zn  catalyst  supported  on  reduced  graphene   oxide/zinc oxide catalysts in the steam reforming of methanol studied
                 oxide nanosheets[J]. Journal of CO 2 Utilization, 2016, 16: 104-113.   by in situ X-Ray diffraction and absorption spectroscopy[J]. Journal
            [8]   Graciani J,  Mudiyanselage K, Xu F, et al. Catalysis. Highly active   of Catalysis, 2001, 203(1): 133-149.
                 copper-ceria and copper-ceria-titania catalysts for methanol synthesis   [25]  Wang L C, Liu Y M, Chen M, et al. Production of hydrogen by steam
                 from CO₂[J]. Science, 2014, 345(6196): 546-550.   reforming of methanol over Cu/ZnO catalysts prepared via a practical
            [9]   Ouyang B, Tan W, Liu B. Morphology effect of nanostructure ceria   soft  reactive  grinding  route  based  on  dry  oxalate-precursor
                 on  the  Cu/CeO 2 catalysts for synthesis of  methanol from  CO 2   synthesis[J]. Journal of Catalysis, 2007, 246(1): 193-204.
                 hydrogenation[J]. Catalysis Communications, 2017, 95: 36-39.   [26]  Luo  M  F,  Ma  J  M,  Lu  J  Q,  et al.  High-surface  area  CuO-CeO 2,
            [10]  Naramoto S, Friml J. Active sites and structure–activity relationships   catalysts  prepared  by  a  surfactant-templated  method  for  low-
                 of  copper-based  catalysts  for  carbon  dioxide  hydrogenation  to   temperature  CO  oxidation[J].  Journal  of  Catalysis,  2007,  246(1):
                 methanol[J]. ACS Catalysis, 2012, 2(8): 1667-1676.   52-59.
            [11]  Li C, Yuan X, Fujimoto K. Development of highly stable catalyst for   [27]  Zhou Yuwen (周郁文), Su Tongming (苏通明), Jiang Yuexiu (蒋月
                 methanol  synthesis  from  carbon  dioxide[J].  Applied  Catalysis  A:   秀)  et al.  Effect  of  the  Co  loading  amount  on  the  performance  of
                 General, 2014, 469: 306-311.                      Co/TiO 2  catalyst  for  CO 2  methanation[J].  Fine  Chemicals  (精细化
            [12]  Ma Y, Sun Q, Wu D, et al. A practical approach for the preparation of   工), 2018, 35(1): 72-80.
                 high activity Cu/ZnO/ZrO 2 catalyst for methanol synthesis from CO 2   [28]  Zhang  Y,  Zhong  L,  Wang  H,  et al.  Catalytic  performance  of
                 hydrogenation[J]. Applied Catalysis A: General, 1998,171(1): 45-55.   spray-dried Cu/ZnO/Al 2O 3/ZrO 2 catalysts for slurry methanol synthesis
            [13]  Guo  X,  Mao  D,  Lu  G,  et al.  CO 2  hydrogenation  to  methanol  over   from  CO 2  hydrogenation[J].  Journal  of  CO 2  Utilization,  2016,  15:
                 Cu/ZnO/ZrO 2 catalysts prepared via a route of solid-state reaction[J].   72-82.
                 Catalysis Communications, 2011, 12(12): 1095-1098.   [29]  Dong X, Li F, Zhao N, et al. CO 2 hydrogenation to methanol over
            [14]  Yang  C,  Ma  Z,  Zhao  N,  et al.  Methanol  synthesis  from  CO 2-rich   Cu/ZnO/ZrO 2 catalysts prepared by precipitation-reduction method[J].
                 syngas over a ZrO 2 doped CuZnO catalyst[J]. Catalysis Today, 2006,   Applied Catalysis B: Environmental, 2016, 191: 8-17.
                 115(1): 222-227.                              [30]  Rui N, Wang Z, Sun K, et al. CO 2 hydrogenation to methanol over
            [15]  Shi L, Tao K, Yang R Q, et al. Study on the preparation of Cu/ZnO   Pd/In 2O 3: effects of Pd and oxygen vacancy[J]. Applied Catalysis B:
                 catalyst  by  sol-gel  auto-combustion  method  and  its  application  for   Environmental, 2017, 218: 488-497.
                 low-temperature  methanol  synthesis[J].  Applied  Catalysis  A:   [31]  Xiao J, Mao D, Guo X, et al. Effect of TiO 2, ZrO 2 and TiO 2-ZrO 2 on
                 General, 2011, 401(1): 46-55.                     the  performance  of  CuO-ZnO  catalyst  for  CO 2  hydrogenation  to
            [16]  Wu K H, Yu C H, Chang Y C, et al. Effect of pH on the formation   methanol[J]. Applied Surface Science, 2015, 338: 146-153.
                 and  combustion  process  of  sol-gel  auto-combustion  derived  NiZn   [32]  Li C, Yuan X, Fujimoto K. Development of highly stable catalyst for
                 ferrite/SiO 2  composites[J].  Journal  of  Solid  State  Chemistry,  2004,   methanol  synthesis  from  carbon  dioxide[J].  Applied  Catalysis  A:
                 177(11): 4119-4125.                               General, 2014, 469: 306-311.
            [17]  Hong L, Hou Z, Xie J, et al. Hydrogenation of CO 2 to CH 3OH over   [33]  Raudaskoski R, Niemelä M V, Keiski R L. The effect of ageing time
                 CuO/ZnO/Al 2O 3 catalysts prepared  via  a  solvent-free  routine[J].   on co-precipitated Cu/ZnO/ZrO 2 catalysts used in methanol synthesis
                 Fuel, 2016, 164: 191-198.                         from CO 2 and H 2[J]. Topics in Catalysis, 2007, 45(1/2/3/4): 57-60.
            [18]  Wei Z X, Wei L, Gong L, et al. Combustion synthesis and effect of   [34]  Bonura G, Arena F, Mezzatesta G, et al. Role of the ceria promoter
                 LaMnO 3  and  La 0.8Sr 0.2MnO 3  on  RDX  thermal  decomposition[J].   and  carrier  on  the  functionality  of  Cu-based  catalysts  in  the
                 Journal of Hazardous Materials, 2010, 177(1): 554-559.   CO 2-to-methanol  hydrogenation  reaction[J].  Catalysis  Today,  2011,
            [19]  Xie Guangzhong (谢光忠), Zhao Mingjing (赵明静), Jiang Yadong   171(1): 251-256.
                 (蒋亚东),  et al.  Polypyrrolefilm  fabrication  with  NH 3  gas  sensing   [35]  Dong X, Feng L, Ning Z, et al. CO 2 hydrogenation to methanol over
                 properties[J].  Journal  of  Uinversity  of  Electronic  Science  and   Cu/ZnO/ZrO 2  catalysts  prepared  by  precipitation-reduction  method[J].
                 Technology of China (中国电子科技大学学报), 2008, 37(2): 289-292.   Applied Catalysis B: Environmental, 2016, 191: 8-17.
   140   141   142   143   144   145   146   147   148   149   150