Page 145 - 精细化工2019年第9期
P. 145
第 9 期 杨家强,等: 含膦酸酯结构单元的磺胺衍生物合成与抗菌活性 ·1873·
从表 1 进一步分析目标化合物的结构与药效关 [3] Abbasi M, Nazifi S M R, Nazifi Z S, et al. Synthesis,
系可以得出:(1) R 1 为 4 位取代的目标物较其他 characterization and in vitro antibacterial activity of novel
phthalazine sulfonamide derivatives[J]. Journal of Chemical
位取代有更好的抗菌活性,如Ⅱc、Ⅱf、Ⅱl、Ⅱo Sciences, 2017, 129(8): 1257-1266.
有更显著的抗菌活性;(2)R 1 为 4-F 取代的目标物 [4] Swain S S, Paidesetty S K, Padhy R N. Antibacterial activity,
computational analysis and host toxicity study of thymol-
比 2-F 取代的目标物有较优的活性,如Ⅱl 抗菌活性
sulfonamide conjugates[J]. Biomedicine & Pharmacotherapy, 2017,
优于Ⅱk,Ⅱf 抗菌活性优于Ⅱe;(3)R 2 为甲氧基 88: 181-193.
或氟原子取代的目标物较其他取代有更优的抗菌活 [5] Pang Fuhua (庞富华), Feng Qizhu (冯启柱), Zhou Yihuan (周异欢).
Synthesis and antibacterial activities of sulfonamides derivatives
性;(4)苯环上无取代基的目标物,抗菌活性较差; bearing 1,2,3-triazole moiety[J]. Fine Chemicals (精细化工), 2019,
(5)表中抗菌活性最优的两化合物Ⅱf 和Ⅱl 具有共 36(1): 106-110.
同的结构特点,R 1 与 R 2 同时连有对位取代基,其抗 [6] Huang M, Ruan X, Li Q, et al. Synthesis and antibacterial activity of
novel phosphorylated flavonoid derivatives[J]. Phosphorus, Sulfur,
菌作用机制有待深入研究。 and Silicon and the Related Elements, 2017, 192(8): 954-959.
从表 1 中也可以看出,部分目标化合物的抗菌 [7] Bartee D, Sanders S, Phillips P D, et al. Enamide prodrugs of acetyl
phosphonate DXP synthase inhibitors as potent antibacterial
活性优于磺胺类抗菌药磺胺嘧啶,与对照药加替沙
agents[J]. ACS Infectious Diseases, 2019, 5(3): 406-417.
星有一定差距,但该类化合物所呈现的潜在抗菌活 [8] Waldroup P W, Spencer G K, Waibel P E, et al. The use of
®
®
性值得进一步结构优化。 bambermycins (Flavomycin ) and halofuginone (Stenorol ) in diets
for growing turkeys[J]. Poultry Science, 1985, 64(7): 1296-1301.
[9] Moazed D, Noller H F. Chloramphenicol, erythromycin, carbomycin
3 结论 and vernamycin B protect overlapping sites in the peptidyl
transferase region of 23S ribosomal RNA[J]. Biochimie, 1987, 69(8):
基于活性片段的药物设计原理,本文设计合成 879-884.
了系列含膦酸酯结构单元的磺胺衍生物并进行抗菌 [10] Rybak J M, Roberts K. Tedizolid phosphate: A next-generation
oxazolidinone[J]. Infectious Diseases and Therapy, 2015, 4(1): 1-14.
活性研究,虽然目标物Ⅱf 和Ⅱl 有较优的抗菌活性, [11] Yang Jiaqiang (杨家强), Hu Yuewei (胡月维), Gu Qing (谷晴), et al.
但与期望值仍有差距,还需进一步活性片段组合, Synthesis and antibacterial activities of novel phosphonate
derivatives containing quinolinone moiety[J]. Chinese Journal of
扩大化合物库,以获取抗菌候选化合物。
Organic Chemistry (有机化学), 2014, 34(4): 829-834.
[12] Yang Jiaqiang (杨家强), Che Wanli (车万莉), Wang Wei (王维), et
参考文献:
al. Synthesis and antibacterial activity of novel 7-phosphoryl
[1] You Qidong (尤启冬). Medicinal chemistry[M]. Beijing: People’s quinolone derivatives [J]. Chinese Pharmaceutical Journal (中国药学
Medical Publishing House (人民卫生出版社), 2016: 348-350. 杂志), 2019, 54(2): 86-90.
[2] He Shichao (何世超), Jeyakkumar P, Rao A S, et al. Recent advance [13] Shen Guanxin ( 沈关心 ). Microbiology and lmmunology[M].
in sulfonamide-based medicinal chemistry[J]. Scientia Sinica Beijing: People’s Medical Publishing House (人民卫生出版社),
Chimica (中国科学: 化学), 2016, 46(9): 823-847. 2007: 326-328.
(上接第 1862 页) Flavour & Fragrance Journal, 2014, 29(4): 193-219.
[21] Banthorpe D V, Bucknall G A, Doonan H J, et al. Terpene
[14] National Institute of Standards and Technology. NIST chemistry biosynthesis. Part 12. Biosynthesis of geraniol and nerol in cell-free
webbook[DB/OL]. https://webbook.nist.gov/chemistry/cas-ser/. extracts of Tanacetum vulgare[J]. Hytochemistry, 1976, 15(1):
[15] Berger R G, Kler A, Drawert F. C6-aldehyde formation from linolenic 91-100.
acid in fruit cells cultured in vitro[J]. Plant Cell Tissue and Organ [22] Haleva-Toledo E, Naim M, Zehavi U, et al. Formation of α-terpineol
Culture, 1987, 8: 147-151. in citrus juices, model and buffer solutions[J]. Journal of Food
[16] Nielsen G S, Larsen L M, Poll L. Formation of aroma compounds Science, 1999, 64(5): 838-841.
and lipoxygenase (EC 1.13.11.12) activity in unblanched leek [23] Ohta T, Morimitsu Y, Sameshima Y, et al. Transformation from
(Allium ampeloprasum Var. Bulga) slices during long-term frozen geraniol, nerol and their glucosides into linalool and α-terpineol
storage[J]. Journal of Agricultural and Food Chemistry, 2003, 51(7): during shochu distillation[J]. Journal of Fermentation and Bioengineering,
1970-1976. 1991, 72(5): 347-351.
[17] Kobori C N, Wagner R, Padula M, et al. Formation of volatile [24] Croteau R, Alonso W R, Koepp A E, et al. Biosynthesis of
compounds from lycopene by autoxidation in a model system monoterpenes: partial purification, characterization, and mechanism
simulating dehydrated foods[J]. Food Research International, 2014, of action of 1, 8-cineole synthase[J]. Archives of Biochemistry and
63(A): 49-54. Biophysics, 1994, 309(1): 184-192.
[18] Furukawa Y. Preparation of vanillin[J]. Koryo, 2012, 253: 95-104. [25] Farina L, Boido E, Carrau F, et al. Terpene compounds as possible
[19] Gallage N J, Hansen E H, Kannangara R, et al. Vanillin formation precursors of 1, 8-cineole in red grapes and wines[J]. Journal of
from ferulic acid in vanilla planifolia is catalysed by a single Agricultural and Food Chemistry, 2005, 53(5): 1633-1636.
enzyme[J]. Nature Communications, 2014, 5: 4037-4050. [26] Van Gemert L J. Odour thresholds-Compilations of odour threshold
[20] Aprotosoaie A C, Hăncianu M, Costache I I, et al. Linalool: A review values in air, water and other media[M]. Netherlands: Oliemans
on a key odorant molecule with valuable biological properties[J]. Punter & Partners B V, 2011: 230-354.