Page 85 - 《精细化工》2020年第1期
P. 85
第 1 期 聂晟楠,等: 换热器表面复合涂层的制备及耐腐蚀与导热性能 ·71·
构成的传热通道更加完整,热能的传递更多地通过 参考文献:
碳材料进行,涂层的热阻进一步降低,导热系数持 [1] Sha Yongbin (沙永斌). Analysis and countermeasure on low-
续增加,直到石墨粉的添加量达到饱和。 temperature corrosion of economizer of oil-fired boiler[J]. Industrial
Boilers (工业锅炉), 2003, 16(5): 54-56.
2.3 结合强度分析 [2] Liang Xuefu (梁学福), Gao Jianping (高建苹). Corrosion reasons of
economizer pipes[J]. Corrosion and Protection (腐蚀与防护), 2012,
经过百格测试后,没有发现石墨烯复合涂层存
33(10): 897-900.
在明显剥落。在 3 倍放大镜下观察涂层表面的划痕, [3] Liu Qiang (刘强). Retrofit of low temperature economizer for 2× 660
MW in the third-state project of shangdu power plant[D]. Beijing:
发现划痕边缘处较为光滑,划痕相交处不存在剥落
North China Electric Power University (华北电力大学), 2017.
现象。百格测试结果表明,石墨烯复合涂层与基材 [4] Cui Junkui (崔俊奎), Zhao Jun (赵军), Guo Renning (郭仁宁).
的结合强度很高,能够达到 ASTM 等级 5B,为百 Abrasion mechanism analysis and protection research on economizer
of circulating fluidized bed boilers[J]. Energy Conservation
格测试结果中结合强度最高的等级。 Technology (节能技术), 2007, 25(5): 475-479.
沿着垂直石墨烯复合涂层表面的方向切割石墨烯 [5] Xu Zhong (徐中), Wang Xingzhen (王兴镇), Zhu Menglei (朱孟磊),
et al. Association study of self-assembly parallel degree and permeability
复合涂层试样,对断面处进行 SEM 扫描,结果见图 6。 of glass flake coatings[J]. Journal of Harbin Engineering University
(哈尔滨工程大学学报), 2015, 36(9): 1276-1280.
[6] Ni Xinliang (倪新亮), Jin Fanya (金凡亚), Wang Qin (王钦), et al.
Adhesion enhancement at interface of al-coating and carbon fiber/res
in composite by plasma activation[J]. Chinese Journal of Vacuum
Science and Technology (真空科学与技术学报), 2015, 35(8): 979-983.
[7] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in
atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[8] Liu Yunqi (刘云圻). Graphene: from basics to applications[M].
Beijing:Chemical Industry Press (化学工业出版社), 2017.
[9] Zou Mingming (邹明明), Li Xiaorui (李小瑞), Shen Yiding (沈一
丁 ), et al. Preparation and properties of modified graphene
oxide/polyaniline anticorrosive materials[J]. Fine Chemicals (精细化
工), 2018, 35(5): 891-900.
图 6 断面 SEM 图片 [10] Wang Na (王娜), Gao Huiying (高慧颖), Zhang Jing (张静), et al.
Fig. 6 SEM image of fracture surface Preparation and anticorrosive properties of epoxy composite coating
containing SBA-15 modified graphene oxide[J]. Fine Chemicals (精
细化工), 2019, 36(7): 1476-1482.
从图 6 可知,石墨烯复合涂层与基体材料界面 [11] Chen Kefeng (陈科锋), Fang Yunhui (方云辉), Zhou Kaihe (周开河)
间不存在明显的分离现象,界面间的缝隙狭窄,说 et al. Preparation and performance evaluation of graphene based
conductive anti-corrosive coatings[J]. Surface Technology (表面技
明石墨烯复合涂层与基材结合紧密,强度较高。 术), 2018, 47(12): 246-254.
[12] Liu Yang (刘杨), Zhao Yueju (赵悦菊), Du Jing (杜婧), et al.
3 结论 Preparation and properties of a modified graphene thermal
conductive anticorrosive coating[C]//The Fifth Congress of Marine
Materials and Corrosion Protection (第五届海洋材料与腐蚀防护大
使用改性石墨烯、石墨粉、环氧树脂等材料制 会), 2018: 257-261.
备了石墨烯复合涂层,对涂层进行了静态硫酸腐蚀 [13] Fukushima K, Takahashi H, Takezawa Y, et al. High thermal
conductive epoxy resins with controlled high-order structure
实验,导热性测试及结合强度测试,并对实验结果 electrical insulation applications[C]//The 17th Annual Meeting of the
进行分析,得到如下结论: IEEE Lasers and Electro-Optics Society, 2004: 340-343.
[14] Li Chenghua (李承花), Zhang Yi (张奕), Zuo Qinhua (左琴华), et
(1)在相同的硫酸腐蚀条件下,石墨烯复合涂 al. Application of differential scanning calorimeter[J]. Analytical
层的腐蚀速率随着石墨烯含量的增加而下降,其耐 Instrumentation (分析仪器), 2015, (4): 88-94.
[15] Berman R. Thermal conduction in solids[M]. Oxford: Oxford
腐蚀性能远强于 304 不锈钢且接近 316 不锈钢。当 University Press, 1976.
石墨烯 质量 分数达到 0.06%时,其 腐蚀速 率为 [16] Parrott J E, Stuckes A D. Thermal conductivity of solids[M]. London:
Pion Limited, 1975.
2
0.2338 mg/(cm ·h)。 [17] Ghosh S, Baladin A A, Teweldebrhan D, et al. Extremely high
(2)随着石墨烯、石墨粉等材料的添加,石墨 thermal conductivity of graphene: Prospects for thermal management
applications in nanoelectronics circuits[J]. Applied Physics Letters,
烯复合涂层的导热系数逐步增加且在石墨粉质量分 2008, 92(15): 151911-151913
数达到 8%时可以达到最大值 35.848 W/(m·K),高于 [18] Novoselov K S, Jiang D, Booth T, et al. Two dimensional atomic
crystal[J]. Pans, 2005, 102(30): 10451-10453.
传统陶瓷涂层及 304 不锈钢的导热系数,能有效提 [19] Zhi Xiaoli (郅小利), Yan Hongxia (颜红侠), Gu Bin (顾斌), et al.
升换热器的换热效果。 Preparation and application of graphene nanocomposite multilayer
films[J]. Materials Review (材料导报), 2015, 29(21): 145-150.
(3)石墨烯复合涂层的结合强度很高,能够达 [20] Chen Yuansheng (程源晟). Synthesis and electrocatalytic properties
到 ASTM 等级 5B。换热器涂覆石墨烯复合涂层后 of composites based on multidimensional graphene materials[D].
Maanshan: Anhui University of Technology (安徽工业大学), 2018.
可以避免传统陶瓷涂层的瓷崩现象。 [21] Moore R R, Banks C E, Compton R G. Basal plane pyrolytic graphite
综上所述,石墨烯复合涂层的综合性能优异, modified electrodes: Comparison of carbon nanotubes and graphite
powder as electrocatalysts[J]. Journal Citation Reports, 2004, 76(10):
有望用作新型换热器表面涂层。 2677-2682.