Page 85 - 《精细化工》2020年第1期
P. 85

第 1 期                   聂晟楠,等:  换热器表面复合涂层的制备及耐腐蚀与导热性能                                     ·71·


            构成的传热通道更加完整,热能的传递更多地通过                             参考文献:
            碳材料进行,涂层的热阻进一步降低,导热系数持                             [1]   Sha  Yongbin  (沙永斌).  Analysis  and  countermeasure  on  low-
            续增加,直到石墨粉的添加量达到饱和。                                     temperature corrosion of economizer of oil-fired boiler[J]. Industrial
                                                                   Boilers (工业锅炉), 2003, 16(5): 54-56.
            2.3    结合强度分析                                      [2]   Liang Xuefu (梁学福), Gao Jianping (高建苹). Corrosion reasons of
                                                                   economizer pipes[J]. Corrosion and Protection (腐蚀与防护), 2012,
                 经过百格测试后,没有发现石墨烯复合涂层存
                                                                   33(10): 897-900.
            在明显剥落。在 3 倍放大镜下观察涂层表面的划痕,                          [3]   Liu Qiang (刘强). Retrofit of low temperature economizer for 2× 660
                                                                   MW  in  the  third-state  project  of  shangdu  power  plant[D].  Beijing:
            发现划痕边缘处较为光滑,划痕相交处不存在剥落
                                                                   North China Electric Power University (华北电力大学), 2017.
            现象。百格测试结果表明,石墨烯复合涂层与基材                             [4]   Cui  Junkui  (崔俊奎),  Zhao  Jun  (赵军),  Guo  Renning  (郭仁宁).
            的结合强度很高,能够达到 ASTM 等级 5B,为百                             Abrasion mechanism analysis and protection research on economizer
                                                                   of  circulating  fluidized  bed  boilers[J].  Energy  Conservation
            格测试结果中结合强度最高的等级。                                       Technology (节能技术), 2007, 25(5): 475-479.
                 沿着垂直石墨烯复合涂层表面的方向切割石墨烯                         [5]   Xu Zhong (徐中), Wang Xingzhen (王兴镇), Zhu Menglei (朱孟磊),
                                                                   et al. Association study of self-assembly parallel degree and permeability
            复合涂层试样,对断面处进行 SEM 扫描,结果见图 6。                           of glass flake coatings[J]. Journal of Harbin Engineering University
                                                                   (哈尔滨工程大学学报), 2015, 36(9): 1276-1280.
                                                               [6]   Ni Xinliang (倪新亮), Jin Fanya (金凡亚), Wang Qin (王钦), et al.
                                                                   Adhesion enhancement at interface of al-coating and carbon fiber/res
                                                                   in  composite  by  plasma  activation[J].  Chinese  Journal  of  Vacuum
                                                                   Science and Technology (真空科学与技术学报), 2015, 35(8): 979-983.
                                                               [7]   Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in
                                                                   atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
                                                               [8]   Liu  Yunqi  (刘云圻).  Graphene:  from  basics  to  applications[M].
                                                                   Beijing:Chemical Industry Press (化学工业出版社), 2017.
                                                               [9]   Zou  Mingming  (邹明明),  Li  Xiaorui  (李小瑞),  Shen  Yiding  (沈一
                                                                   丁 ),  et al.  Preparation  and  properties  of  modified  graphene
                                                                   oxide/polyaniline anticorrosive materials[J]. Fine Chemicals (精细化

                                                                   工), 2018, 35(5): 891-900.
                           图 6    断面 SEM 图片                    [10]  Wang Na (王娜), Gao Huiying (高慧颖), Zhang Jing (张静), et al.
                     Fig. 6    SEM image of fracture surface       Preparation and anticorrosive properties of epoxy composite coating
                                                                   containing SBA-15 modified graphene oxide[J]. Fine Chemicals (精
                                                                   细化工), 2019, 36(7): 1476-1482.
                 从图 6 可知,石墨烯复合涂层与基体材料界面                        [11]  Chen Kefeng (陈科锋), Fang Yunhui (方云辉), Zhou Kaihe (周开河)
            间不存在明显的分离现象,界面间的缝隙狭窄,说                                 et al.  Preparation  and  performance  evaluation  of  graphene  based
                                                                   conductive  anti-corrosive  coatings[J].  Surface  Technology  (表面技
            明石墨烯复合涂层与基材结合紧密,强度较高。                                  术), 2018, 47(12): 246-254.
                                                               [12]  Liu  Yang  (刘杨),  Zhao  Yueju  (赵悦菊),  Du  Jing  (杜婧),  et al.
            3    结论                                                Preparation  and  properties  of  a  modified  graphene  thermal
                                                                   conductive  anticorrosive  coating[C]//The  Fifth  Congress  of  Marine
                                                                   Materials and Corrosion Protection (第五届海洋材料与腐蚀防护大
                 使用改性石墨烯、石墨粉、环氧树脂等材料制                              会), 2018: 257-261.
            备了石墨烯复合涂层,对涂层进行了静态硫酸腐蚀                             [13]  Fukushima  K,  Takahashi  H,  Takezawa  Y,  et al.  High  thermal
                                                                   conductive  epoxy  resins  with  controlled  high-order  structure
            实验,导热性测试及结合强度测试,并对实验结果                                 electrical insulation applications[C]//The 17th Annual Meeting of the
            进行分析,得到如下结论:                                           IEEE Lasers and Electro-Optics Society, 2004: 340-343.
                                                               [14]  Li Chenghua (李承花), Zhang Yi (张奕), Zuo Qinhua (左琴华), et
                (1)在相同的硫酸腐蚀条件下,石墨烯复合涂                              al.  Application  of  differential  scanning  calorimeter[J].  Analytical
            层的腐蚀速率随着石墨烯含量的增加而下降,其耐                                 Instrumentation (分析仪器), 2015, (4): 88-94.
                                                               [15]  Berman  R.  Thermal  conduction  in  solids[M].  Oxford:  Oxford
            腐蚀性能远强于 304 不锈钢且接近 316 不锈钢。当                           University Press, 1976.
            石墨烯 质量 分数达到 0.06%时,其 腐蚀速 率为                        [16]  Parrott J E, Stuckes A D. Thermal conductivity of solids[M]. London:
                                                                   Pion Limited, 1975.
                         2
            0.2338 mg/(cm ·h)。                                 [17]  Ghosh  S,  Baladin  A  A,  Teweldebrhan  D,  et al.  Extremely  high
                (2)随着石墨烯、石墨粉等材料的添加,石墨                              thermal conductivity of graphene: Prospects for thermal management
                                                                   applications  in  nanoelectronics  circuits[J].  Applied  Physics  Letters,
            烯复合涂层的导热系数逐步增加且在石墨粉质量分                                 2008, 92(15): 151911-151913
            数达到 8%时可以达到最大值 35.848 W/(m·K),高于                   [18]  Novoselov  K  S,  Jiang  D,  Booth  T,  et al.  Two  dimensional  atomic
                                                                   crystal[J]. Pans, 2005, 102(30): 10451-10453.
            传统陶瓷涂层及 304 不锈钢的导热系数,能有效提                          [19]  Zhi Xiaoli (郅小利), Yan Hongxia (颜红侠), Gu Bin (顾斌), et al.
            升换热器的换热效果。                                             Preparation  and  application  of  graphene  nanocomposite  multilayer
                                                                   films[J]. Materials Review (材料导报), 2015, 29(21): 145-150.
                (3)石墨烯复合涂层的结合强度很高,能够达                          [20]  Chen Yuansheng (程源晟). Synthesis and electrocatalytic properties
            到 ASTM 等级 5B。换热器涂覆石墨烯复合涂层后                             of  composites  based  on  multidimensional  graphene  materials[D].
                                                                   Maanshan: Anhui University of Technology (安徽工业大学), 2018.
            可以避免传统陶瓷涂层的瓷崩现象。                                   [21]  Moore R R, Banks C E, Compton R G. Basal plane pyrolytic graphite
                 综上所述,石墨烯复合涂层的综合性能优异,                              modified electrodes: Comparison of carbon nanotubes and graphite
                                                                   powder as electrocatalysts[J]. Journal Citation Reports, 2004, 76(10):
            有望用作新型换热器表面涂层。                                         2677-2682.
   80   81   82   83   84   85   86   87   88   89   90