Page 138 - 《精细化工》2020年 第10期
P. 138

·2068·                            精细化工   FINE CHEMICALS                                 第 37 卷

            率、氮气流速 3 个因素为响应变量,以生物油产率                               社), 2012: 200-201.
            为响应值,通过应用 Design-Expert8.0.6.1 软件中的                [11]  Standardization  Administration  of  the  People's  Republic  of  China.
                                                                   Pulps-determination  of  ash:  GB/T742—1989[S].  Beijing:  China
            Box-Behnken 统计分析得到二次数学回归方程,                            Standard Press (中国标准出版社), 1989: 152-153.
              2
            R =0.9934,表明此回归方程与实验结果拟合度非常                        [12]  American society for testing and materials. Standard test method for
                                                                   volatile  matter  in  the  analysis  of  particulate  wood  fuels:  ASTM
            好。通过方差分析结果和响应面图分析得到,3 个
                                                                   E872—82[S]. New Mexico: Standards Press of American, 2006: 1-3.
            因素对生物油产率影响的顺序依次为温度>升温速                             [13]  FAN  Y  S  (樊永胜), CAI  Y  X (蔡忆昔),  LI  X  H  (李小华),  et al.
            率>N 2 流速。最佳工艺参数为:温度 563.25 ℃、升                         Vacuum pyrolysis of camphorwood sawdust optimized by response
                                                                   surface methodology and bio-oil composition analysis[J]. Chemistry
            温速率 16.21 ℃/min、氮气流速 78.43 mL/min,生物
                                                                   and  Industry  of  Forest  Products  (林产化学与工业),  2014,  34(6):
            油产率为 27.63%,接近理论值。                                     29-36.
                 在最大生物油产率条件下进行微波催化热解,                          [14]  WANG L (王璐), XU L X (许立兴), LI J (李剑), et al. Studies on
                                                                   micro-bimodal mesoporous core-shell HZSM-5@BMMs catalyst for
            复合催化剂 ZSM-5/SBA-15 的加入可以降低固体产                          methanol to aromatics[J]. Fine Chemicals (精细化工), 2018, 35(9):
            率(约 2.43%),增加生物油产率(约 1.42%)。与                          1562-1566.
            SBA-15 和 ZSM-5 相比,复合催化剂可以促进如苯                      [15]  GU  S  Y  (谷士艳),  YU  M  L  (于美玲),  KOU  W  (寇巍), et al.  A
                                                                   process  optimization  of  anaerobic  co-digestion  of  pig  manure  and
            并呋喃等活性中间体通过脱氧生成烃类化合物,含                                 food  waste[J].  Renewable  Energy  Resources  (可再生能源),  2015,
            量为 6.42%,且酚类化合物(含量 39.65%)的产生                          33(2): 308-313.
            是通过甲氧基-羟基-苯丙酮(或苯乙酮)等木质素                            [16]  HALIM  S  F  A,  KAMARUDDIN  A  H,  FERNANDO  W  J  N.
                                                                   Continuous biosynthesis of biodiesel from waste cooking palm oil in
            衍生物裂解产生。复合催化剂 ZSM-5/SBA-15 酸性                          a packed bed reactor: Optimization using response surface methodology
            适中,可促进活性中间体反应,从而增加酚类和烃                                 (RSM) and mass transfer studies[J]. Bioresource Technology, 2009,
                                                                   100(2): 710-716.
            类在生物油中的含量。
                                                               [17]  ABDULGADER  M,  YU  J,  ZINATIZADEH  A  A,  et al. Process
                                                                   analysis and optimization of single stage flexible fiber biofilm reactor
            参考文献:
                                                                   treating milk processing industrial wastewater using response surface
            [1]   MUSHTAQ F, ABDULLAH T A T, MAT R, et al. Optimization and   methodology (RSM)[J]. Chemical Engineering Research and Design,
                 characterization of bio-oil produced by microwave assisted pyrolysis   2019, 149: 169-181.
                 of oil palm shell waste biomass with microwave absorber[J]. Bioresource   [18]  SOETATDJI J P, WIDJAJA C, DJOJORAHARDJO Y, et al. Bio-oil
                 Technology, 2015, 190: 442-450.                   from jackfruit peel waste[J]. Procedia Chemistry, 2014, 9: 158-164.
            [2]   ZHAO  X,  ZHOU  H,  SIKARWAR  S  V,  et al.  Biomass-based   [19]  YIN  C  G.  Microwave-assisted  pyrolysis  of  biomass  for  liquid
                 chemical looping technologies: The good, the bad and the future[J].   biofuels production[J]. Bioresource Technology, 2012, 120: 273-284.
                 Energy & Environmental Science, 2017, 10: 1885-1910.   [20]  JAMALUDDIN  M  A,  ISMAIL  K,  ISHAK  M  A  M,  et al.
            [3]   BU Q, CHEN K, XIE W, et al. Hydrocarbon rich bio-oil production,   Microwave-assisted  pyrolysis  of  palm  kernel  shell:  Optimization
                 thermal  behavior  analysis  and  kinetic  study  of  microwave-assisted   using  response  surface  methodology  (RSM)[J].  Renewable  Energy,
                 co-pyrolysis  of  microwave-torrefied  lignin  with  low  density   2013, 55: 357-365.
                 polyethylene[J]. Bioresource Technology, 2019, 291: 121860.   [21]  SHEN  J  (沈健),  LIU  P  (刘鹏).  Preparation  of  ZSM-5-SBA-15
            [4]   LIU  P  (刘鹏),  SHEN  J  (沈健).  Preparation  of  ZSM-5-SBA-15   composite  molecular  sieves[J].  Journal  of  the  Chinese  Ceramic
                 composite  molecular  sieves  and  its  performance  for  toluene   Society (硅酸盐学报), 2015, 43(2): 875-881.
                 alkylation  with  methanol[J].  Journal  of  Fuel  Chemistry  and   [22]  XU L, ZHANG Q, ZHANG M, et al. Synthesis of micro-mesoporous
                 Technology (燃料化学学报), 2015, 43(9): 1147-1152.      molecular  sieve  ZSM-5/SBA-15:  Tuning  aluminium  content  for
            [5]   ZHU Z R, XIE Z K, CHEN Q L, et al. Chemical liquid deposition   tert-butylation  of  phenol[J].  Journal  of  Chemical  Sciences,  2019,
                 with  polysiloxane  of  ZSM-5  and  its  effect  on  acidity  and  catalytic   131(42): 1-11.
                 properties[J].  Microporous  and  Mesoporous  Materials,  2007,  101(1/2):   [23]  LI Z Y, ZHONG Z P, ZHANG B, et al. Catalytic fast pyrolysis of
                 169-175.                                          rice  husk  over  hierarchical  micro-mesoporous  composite molecular
            [6]   ZHANG  H  Y,  SHAO  S  S,  LUO  M  M,  et al.  The  comparison  of   sieve:  Analytical  Py-GC/MS  study[J].  Journal  of  Analytical  and
                 chemical liquid deposition and acid dealumination modified ZSM-5   Applied Pyrolysis, 2019, 138: 103-113.
                 for catalytic pyrolysis of pinewood using pyrolysis-gas chromatography/   [24]  OMORIYEKOMWAN J E, TAHMASEBI A, YU J L. Production of
                 mass spectrometry[J]. Bioresource Technology, 2017, 244: 726-732.   phenol-rich  bio-oil  during  catalytic  fixed-bed  and  microwave
            [7]   GOODARZI F, HERRERO I P, KALANTZOPOULOS G N, et al.   pyrolysis  of  palm  kernel  shell[J].  Bioresource  Technology,  2016,
                 Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin   207: 188-196.
                 protective shell of silicalite-1 for MTH conversion[J]. Microporous   [25]  ZHENG A Q, ZHAO Z L, CHANG S, et al. Effect of crystal size of
                 and Mesoporous Materials, 2020, 292: 109730.      ZSM-5  on  the  aromatic  yield  and  selectivity  from  catalytic  fast
            [8]   MA  W  (马文),  XU  S  Y  (徐森元),  DONG  Z  X  (董正鑫),  et al.   pyrolysis of biomass[J]. Journal of Molecular Catalysis A: Chemical,
                 Influence  of  silica  source  on  synthesis  of  ZSM-5  molecular  sieves   2014, 383/384: 23-30.
                 from kaolin[J]. Fine Chemicals (精细化工), 2019, 36(5): 924-928.   [26]  USLAMIN  E  A,  KOSINOV  N  A,  PIDKO  E  A, et al.  Catalytic
            [9]   LI Z Y, ZHONG Z P, ZHANG B, et al. Catalytic fast pyrolysis of   conversion of furanic compounds over Ga-modified ZSM-5 zeolites
                 bamboo  over  micro-mesoporous  composite  molecular  sieves[J].   as a route to biomass-derived aromatics[J]. Green Chemistry, 2018,
                 Energy Technology, 2018, 6: 728-736.              20(16): 3818-3827.
            [10]  Standardization  Administration  of  the  People's  Republic  of  China.   [27]  MA  Z  Q,  TROUSSARD  E,  BOKHOVEN  J  A  V.  Controlling  the
                 Determination  of  moisture  content  in  fibrous  raw  material:  GB/   selectivity  to  chemicals  from  lignin  via  catalytic  fast  pyrolysis[J].
                 T2677.2—2011[S].  Beijing:  China  Standard  Press  (中国标准出版  Applied Catalysis A: General, 2012, 423/424: 130-136.
   133   134   135   136   137   138   139   140   141   142   143