Page 138 - 《精细化工》2020年 第10期
P. 138
·2068· 精细化工 FINE CHEMICALS 第 37 卷
率、氮气流速 3 个因素为响应变量,以生物油产率 社), 2012: 200-201.
为响应值,通过应用 Design-Expert8.0.6.1 软件中的 [11] Standardization Administration of the People's Republic of China.
Pulps-determination of ash: GB/T742—1989[S]. Beijing: China
Box-Behnken 统计分析得到二次数学回归方程, Standard Press (中国标准出版社), 1989: 152-153.
2
R =0.9934,表明此回归方程与实验结果拟合度非常 [12] American society for testing and materials. Standard test method for
volatile matter in the analysis of particulate wood fuels: ASTM
好。通过方差分析结果和响应面图分析得到,3 个
E872—82[S]. New Mexico: Standards Press of American, 2006: 1-3.
因素对生物油产率影响的顺序依次为温度>升温速 [13] FAN Y S (樊永胜), CAI Y X (蔡忆昔), LI X H (李小华), et al.
率>N 2 流速。最佳工艺参数为:温度 563.25 ℃、升 Vacuum pyrolysis of camphorwood sawdust optimized by response
surface methodology and bio-oil composition analysis[J]. Chemistry
温速率 16.21 ℃/min、氮气流速 78.43 mL/min,生物
and Industry of Forest Products (林产化学与工业), 2014, 34(6):
油产率为 27.63%,接近理论值。 29-36.
在最大生物油产率条件下进行微波催化热解, [14] WANG L (王璐), XU L X (许立兴), LI J (李剑), et al. Studies on
micro-bimodal mesoporous core-shell HZSM-5@BMMs catalyst for
复合催化剂 ZSM-5/SBA-15 的加入可以降低固体产 methanol to aromatics[J]. Fine Chemicals (精细化工), 2018, 35(9):
率(约 2.43%),增加生物油产率(约 1.42%)。与 1562-1566.
SBA-15 和 ZSM-5 相比,复合催化剂可以促进如苯 [15] GU S Y (谷士艳), YU M L (于美玲), KOU W (寇巍), et al. A
process optimization of anaerobic co-digestion of pig manure and
并呋喃等活性中间体通过脱氧生成烃类化合物,含 food waste[J]. Renewable Energy Resources (可再生能源), 2015,
量为 6.42%,且酚类化合物(含量 39.65%)的产生 33(2): 308-313.
是通过甲氧基-羟基-苯丙酮(或苯乙酮)等木质素 [16] HALIM S F A, KAMARUDDIN A H, FERNANDO W J N.
Continuous biosynthesis of biodiesel from waste cooking palm oil in
衍生物裂解产生。复合催化剂 ZSM-5/SBA-15 酸性 a packed bed reactor: Optimization using response surface methodology
适中,可促进活性中间体反应,从而增加酚类和烃 (RSM) and mass transfer studies[J]. Bioresource Technology, 2009,
100(2): 710-716.
类在生物油中的含量。
[17] ABDULGADER M, YU J, ZINATIZADEH A A, et al. Process
analysis and optimization of single stage flexible fiber biofilm reactor
参考文献:
treating milk processing industrial wastewater using response surface
[1] MUSHTAQ F, ABDULLAH T A T, MAT R, et al. Optimization and methodology (RSM)[J]. Chemical Engineering Research and Design,
characterization of bio-oil produced by microwave assisted pyrolysis 2019, 149: 169-181.
of oil palm shell waste biomass with microwave absorber[J]. Bioresource [18] SOETATDJI J P, WIDJAJA C, DJOJORAHARDJO Y, et al. Bio-oil
Technology, 2015, 190: 442-450. from jackfruit peel waste[J]. Procedia Chemistry, 2014, 9: 158-164.
[2] ZHAO X, ZHOU H, SIKARWAR S V, et al. Biomass-based [19] YIN C G. Microwave-assisted pyrolysis of biomass for liquid
chemical looping technologies: The good, the bad and the future[J]. biofuels production[J]. Bioresource Technology, 2012, 120: 273-284.
Energy & Environmental Science, 2017, 10: 1885-1910. [20] JAMALUDDIN M A, ISMAIL K, ISHAK M A M, et al.
[3] BU Q, CHEN K, XIE W, et al. Hydrocarbon rich bio-oil production, Microwave-assisted pyrolysis of palm kernel shell: Optimization
thermal behavior analysis and kinetic study of microwave-assisted using response surface methodology (RSM)[J]. Renewable Energy,
co-pyrolysis of microwave-torrefied lignin with low density 2013, 55: 357-365.
polyethylene[J]. Bioresource Technology, 2019, 291: 121860. [21] SHEN J (沈健), LIU P (刘鹏). Preparation of ZSM-5-SBA-15
[4] LIU P (刘鹏), SHEN J (沈健). Preparation of ZSM-5-SBA-15 composite molecular sieves[J]. Journal of the Chinese Ceramic
composite molecular sieves and its performance for toluene Society (硅酸盐学报), 2015, 43(2): 875-881.
alkylation with methanol[J]. Journal of Fuel Chemistry and [22] XU L, ZHANG Q, ZHANG M, et al. Synthesis of micro-mesoporous
Technology (燃料化学学报), 2015, 43(9): 1147-1152. molecular sieve ZSM-5/SBA-15: Tuning aluminium content for
[5] ZHU Z R, XIE Z K, CHEN Q L, et al. Chemical liquid deposition tert-butylation of phenol[J]. Journal of Chemical Sciences, 2019,
with polysiloxane of ZSM-5 and its effect on acidity and catalytic 131(42): 1-11.
properties[J]. Microporous and Mesoporous Materials, 2007, 101(1/2): [23] LI Z Y, ZHONG Z P, ZHANG B, et al. Catalytic fast pyrolysis of
169-175. rice husk over hierarchical micro-mesoporous composite molecular
[6] ZHANG H Y, SHAO S S, LUO M M, et al. The comparison of sieve: Analytical Py-GC/MS study[J]. Journal of Analytical and
chemical liquid deposition and acid dealumination modified ZSM-5 Applied Pyrolysis, 2019, 138: 103-113.
for catalytic pyrolysis of pinewood using pyrolysis-gas chromatography/ [24] OMORIYEKOMWAN J E, TAHMASEBI A, YU J L. Production of
mass spectrometry[J]. Bioresource Technology, 2017, 244: 726-732. phenol-rich bio-oil during catalytic fixed-bed and microwave
[7] GOODARZI F, HERRERO I P, KALANTZOPOULOS G N, et al. pyrolysis of palm kernel shell[J]. Bioresource Technology, 2016,
Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin 207: 188-196.
protective shell of silicalite-1 for MTH conversion[J]. Microporous [25] ZHENG A Q, ZHAO Z L, CHANG S, et al. Effect of crystal size of
and Mesoporous Materials, 2020, 292: 109730. ZSM-5 on the aromatic yield and selectivity from catalytic fast
[8] MA W (马文), XU S Y (徐森元), DONG Z X (董正鑫), et al. pyrolysis of biomass[J]. Journal of Molecular Catalysis A: Chemical,
Influence of silica source on synthesis of ZSM-5 molecular sieves 2014, 383/384: 23-30.
from kaolin[J]. Fine Chemicals (精细化工), 2019, 36(5): 924-928. [26] USLAMIN E A, KOSINOV N A, PIDKO E A, et al. Catalytic
[9] LI Z Y, ZHONG Z P, ZHANG B, et al. Catalytic fast pyrolysis of conversion of furanic compounds over Ga-modified ZSM-5 zeolites
bamboo over micro-mesoporous composite molecular sieves[J]. as a route to biomass-derived aromatics[J]. Green Chemistry, 2018,
Energy Technology, 2018, 6: 728-736. 20(16): 3818-3827.
[10] Standardization Administration of the People's Republic of China. [27] MA Z Q, TROUSSARD E, BOKHOVEN J A V. Controlling the
Determination of moisture content in fibrous raw material: GB/ selectivity to chemicals from lignin via catalytic fast pyrolysis[J].
T2677.2—2011[S]. Beijing: China Standard Press (中国标准出版 Applied Catalysis A: General, 2012, 423/424: 130-136.