Page 152 - 《精细化工》2020年 第10期
P. 152

·2082·                            精细化工   FINE CHEMICALS                                 第 37 卷

                                                               采用修改的溶剂注入法,并在壳聚糖水相中添加质
                                                               量浓度为 20 g/L 的水溶性维生素 E 时制得的纳米粒
                                                               具有最大包封率(51.13%)。此时,纳米粒的平均粒
                                                               径为 142.23 nm,电位为 24.57 mV,外形类似球形。
                                                               自组装纳米粒可显著提高荷叶碱的贮藏稳定性,为
                                                               将荷叶碱开发成天然防腐剂提供了参考。胃环境是
                                                               荷叶碱在人体中被破坏的主要场所,经胃消化后荷叶
                                                               碱保留率仅为 27.30%,经肠消化后保留率仅为
                                                               20.29%,自组装纳米粒可显著提高荷叶碱的消化稳
                                                               定性,使得荷叶碱经肠消化后保留率达到 82.98%。
              图 7    荷叶碱和荷叶碱自组装纳米粒的体外释放曲线
            Fig. 7    In vitro release curves of nuciferine and nuciferine   在体外模拟释放实验中荷叶碱自组装纳米粒表现出
                   from nuciferin-encapsulated self-assembled nanoparticles   一定的缓释性,表明自组装纳米粒具有克服荷叶生
                                                               物碱应用障碍的潜力,为荷叶生物碱的进一步利用
            表 3    荷叶碱和荷叶碱自组装纳米粒的体外释放模型拟
                  合结果                                          提供了理论参考。
            Table  3   In  vitro  release  kinetics  model  fitting  results  of   参考文献:
                    nuciferine from nuciferine and nuciferin-encapsulated
                    self-assembled nanoparticles               [1]   WANG Y Y (王颖滢). Study on isolation, identification, antimicrobial
                                                                   activity of alkaloids from lotus leaf[D]. Hangzhou: Zhejiang University
                                   荷叶碱自组装纳
                  模型          参数                  荷叶碱              (浙江大学),2012
                                   米粒
                                                               [2]   WANG Y X (王玉霞),  LIU  B  (刘斌), SHI R B (石任兵),  et al.
                                2
             Korsmeyer-Peppas   R       0.8983     0.9184          Determination of nuciferine in Beagle dog plasma by RP-HPLC and
                               k 1     31.9027    56.1684          research on its pharmacokinetics[J]. Chinese Journal of Pharmaceutical
                                                                   Analysis (药物分析杂志), 2008, 28(9): 1418-1421.
                               n        0.3300     0.1757
                                                               [3]   WANG  F  G,  CAN  J,  HOU  X  Q,  et al.  Pharmacokinetics,  tissue
                                2
             Higuchi           R        0.8244     0.6123          distribution, bioavailability, and excretion of nuciferine, an alkaloid
                               k 2     15.8474    12.5176          from lotus, in rats by LC/MS/MS[J]. Drug Development and Industrial
                                                                   Pharmacy, 2018, 44(9): 1557-1562.
                               c       13.1042    37.1075
                                                               [4]   GERELLI Y, BARI M, DERIU A, et al. Structure and organization of
                                2
             一级模型              R        0.9884     0.9346          phospholipid/polysaccharide  nanoparticles[J].  Journal  of  Physics-
                               k 3     –0.1648    –0.4409          Condensed Matter, 2008, 20(10): 104211-104218.
                                                               [5]   DUTTAGUPTA D, JADHAV V, KADAM V. Chitosan: A propitious
                               c 1      4.5637     4.4998
                                                                   biopolymer for drug delivery[J]. Current Drug Delivery, 2015, 12(4):
                                2
             零级模型              R        0.5884     0.3717          369-381.
                               k 3      1.8449     1.3142      [6]   GAO L, ZHANG D R, CHEN M H, et al. Studies on pharmacokinetics
                                                                   and tissue distribution of oridonin nanosuspensions[J]. International
                               c 2     34.3530    55.4010
                                                                   Journal of Pharmaceutics, 2008, 355(1/2): 321-327.
                                                               [7]   REPKA  M  A,  MCGINITY  J  W.  Bioadhesives  properties  of
                 与未包埋的荷叶碱相比,荷叶碱自组装纳米粒                              hydroxypropylcellulose topical films produced by hot-melt extrusion[J].
            的缓释性虽有提升,但幅度并不大。分析原因可能                                 Journal of Controlled Release, 2001, 70(3): 341-351.
                                                               [8]   SONVICO  F,  CAGNANI  A,  ROSSI  A,  et al.  Formation  of
            是自组装纳米粒的包封率最大只有 51.13%所致,导                             self-organized nanoparticles by lecithin/chitosan ionic interaction[J].
            致未被包封的荷叶碱快速扩散到释放介质中,而被                                 International Journal of Pharmaceutics, 2006, 324(1): 67-73.
                                                               [9]   LIU L Y, ZHOU C P, XIA X J, et al. Self-assembled lecithin/chitosan
            包封的荷叶碱缓慢释放,所以自组装纳米粒的整体
                                                                   nanoparticles  for  oral  insulin  delivery:  Preparation  and  functional
            释放速率低于未包封的荷叶碱实验组。在拟合                                   evaluation[J].  International  Journal  of  Nanomedicine,  2016,  11:
                                                                   761-769.
            Korsmeyer-Peppas 模型中,n 值小于 0.45,即表示荷               [10]  SENYIGIT  T,  SONVICO  F,  BARBIERI  S,  et al.  Lecithin/chitosan
            叶碱在释放介质中以 Fickian 扩散为主             [18] 。这可能是          nanoparticles of clobetaso-17-propionate capable of accumulation in
            因为,荷叶碱为亲脂性正电荷药物,而磷脂-壳聚糖                                pig skin[J]. Journal of Controlled Release, 2010, 142(3): 368-373.
                                                               [11]  TAN Q, LIU W D, GUO C Y, et al. Preparation and evaluation of
            自组装纳米粒表面电位也为正,同电相斥,导致荷                                 quercetin-loaded lecithin-chitosan nanoparticles for topical delivery[J].
            叶碱并未被吸附在纳米粒表面,所以荷叶碱在释放                                 International Journal of Nanomedicine, 2011, 6: 1621-1630.
                                                               [12]  RUTTALA  H,  RAMASAMY  T.  Multiple  polysaccharide-drug
            介质的释放与纳米载体是否消融无关。
                                                                   complex-loaded  liposomes:  A  unique  strategy  in  drug  loading  and
                                                                   cancer targeting[J]. Carbohydrate Polymers, 2017, 173: 57-66.
            3    结论                                            [13]  RAFIEE  Z,  BARZEGAR  M,  SAHARI  M,  et al.  Nanoliposomal
                                                                   carriers for improvement the bioavailability of high-valued phenolic
                 用磷脂-壳聚糖自组装纳米粒包埋荷叶碱,并以                             compounds of pistachio green hull extract[J]. Food Chemistry, 2017,
                                                                   220: 115-122.
            包封率为指标探究了最佳制备工艺。结果表明,当                                                           (下转第 2131 页)
   147   148   149   150   151   152   153   154   155   156   157