Page 154 - 《精细化工》2020年第11期
P. 154
·2300· 精细化工 FINE CHEMICALS 第 37 卷
道 [8-9,22] ,催化剂催化活性降低可能是由于积炭附着 [J]. Energy Environ Sci, 2013, 6: 1415-1442.
[3] JIA B (贾冰), XIN K (辛坤), YU J S (于记生), et al. Progress
于催化剂表面,降低了催化活性。本文改进了催化
in synthesis of dihydroxyacetone (DHA) from formose reaction[J].
剂回收处理方法,每次反应结束后,过滤回收的催化 Modern Chemical Industry (现代化工), 2017, 37(1): 23-27.
剂用乙醇清洗两次,然后在 300 ℃下煅烧处理 2 h, [4] JIA B (贾冰), XIN K (辛坤), YU Y M (于英民), et al. Synthesis
of 1,3-dihydroxyacetone by montmorillonite supported thiazolium
处理后的催化剂能有效催化 DHA 制备乳酸酯,如 catalysts[J]. Fine Chemicals (精细化工), 2018, 35(2): 261-266.
图 8 所示。催化剂循环使用 4 次,催化活性只有小 [5] HAYASHI Y, SASAKI Y. Tin-catalyzed conversion of trioses to alkyl
幅降低,乳酸甲酯收率为 86.9%~92.3%,说明 300 ℃ lactates in alcohol solution[J]. Chem Commun, 2005, 21: 2716-2718.
[6] PESCARMONA P P, JACOBS P A, SELS B F. Zeolite-catalysed
处理能够除去负载在催化剂表面的残余物,使催化 conversion of C3 sugars to alkyl lactates[J]. Green Chem, 2010, 12(6):
剂重新获得较高的活性。由图 8 可知,改性催化剂 1083-1089.
[7] YANG X M, WU U L, XU U J, et al. Conversion of dihydroxyacetone
具有良好的循环性和稳定性,可有效催化 DHA 与醇 to methyl lactate catalyzed by highly active hierarchical Sn-USY at
反应制备乳酸酯。 room temperature[J]. Catal Sci Technol, 2016, 6: 1757-1763.
[8] TAARNING E, SARAVANAMURUGAN S, HOLM M S, et al.
Zeolite-catalyzed isomerization of triose sugars[J]. ChemSusChem,
2009, 2(7): 625-627.
[9] HAMMOND C, CONRAD S, HERMANS I. Simple and scalable
preparation of highly active Lewis acidic Sn-β[J]. Angew Chem Int
Ed, 2012, 51(47): 11736-11739.
[10] XIA C J, LIU Y J, SHU X T, et al. Confirmation of the isomorphous
substitution by Sn atoms in the framework positions of MFI-typed
zeolite[J]. Catal Today, 2018, 316: 193-198.
[11] LI L, STROOBANTS C, SELS B S, et al. Selective conversion of
trioses to lactates over Lewis acid heterogeneous catalysts[J]. Green
Chem, 2011, 13(5): 1175-1181.
[12] LI L, COLLARD X, SELS B S, et al. Extra-small porous Sn-silicate
nanoparticles as catalysts for the synthesis of lactates[J]. J Catal,
2014, 314: 56-65.
图 8 M-3 催化剂循环利用性能 [13] GODARD N, COLLARD X, APRILEA C, et al. Rapid room
Fig. 8 Reusability of M-3 catalyst temperature synthesis of tin-based mesoporous solids: Influence of the
particle size on the production of ethyl lactate[J]. Appl Catal A-Gen,
3 结论 2018, 556(25): 73-80.
[14] WANG J C, MASUI Y M, ONAKA M. Conversion of triose sugars
改性 Sn-MCM-22 催化剂用于催化 DHA 与醇制 with alcohols to alkyl lactates catalyzed by Brønsted acid tin ion-
exchanged montmorillonite[J]. Appl Catal B-Environ, 2011, 107(1/2):
备乳酸酯表现出较好的催化性能。催化剂通过硝酸 135-139.
脱 MCM-22 骨架铝,然后经过 SnCl 4 •5H 2 O 和 HMI [15] DE CLIPPEL F, DUSSELIER M, SELS B F, et al. Fast and selective
sugar conversion to alkyl lactate and lactic acid with bifunctional
水热晶化法制备得到;Sn 以嵌入和 SnO 2 接枝方式 carbon-silica catalysts[J]. J Am Chem Soc, 2012, 134(24): 10089-
改性 MCM-22;改性 Sn-MCM-22(M-3)催化剂有效 10101.
调控了 Lewis 和 Brønsted 酸性位点比例,提高了催 [16] LYU X L, XU L, LU X Y, et al. New insights into the NiO catalytic
mechanism on the conversion of fructose to methyl lactate[J]. Catal
化剂对 DHA 制备乳酸酯的催化性能。当选用催化剂 Commun, 2019, 119: 46-50.
M-3 60 mg,DHA 醇溶液浓度 0.25 mol/L,反应时 [17] TEMPELMAN C H, PORTILLA L M T, HENSEN E J M, et al. One-
pot synthesis of nano-crystalline MCM-22[J]. Micropor Mesopor
间 7~15 h,DHA 与甲醇、乙醇、正丙醇、正丁醇反 Mater, 2016, 220: 28-38.
应制备相应乳酸酯收率为 86.4%~96.3%。改性催化 [18] WANG Z D (王振东), ZHANG Y X (张云贤), YANG W M (杨为
剂 M-3 容易回收,在 300 ℃下煅烧处理 2 h 可除去 民), et al. Synthesis and catalytic properties of MCM-22 zeolites
with different morphologies[J]. Acta Petrolei Sinica (Petroleum
负载在表面的残余物,催化剂重新获得较高的活性, Processing Section) (石油学报: 石油加工), 2014, 30(1): 110-114.
循环使用 4 次,乳酸甲酯收率为 86.9%~92.3%。此 [19] KIM K D, WANG Z C, HUANG J, et al. The cooperative effect of
Lewis and Brønsted acid sites on Sn-MCM-41 catalysts for the
后研究应着重于简化催化剂的制备方法,降低催化
conversion of 1,3-dihydroxyacetone to ethyl lactate[J]. Green Chem,
反应温度,减少反应时间,进一步提高乳酸酯的收 2019, 21(9): 3383-3393.
率,提供更丰富的应用研究。 [20] NIE L Y (聂丽影). Properties of zeolites catalyze dihydroxyacetone
synthesis of methyl lactate[D]. Changchun: Jilin University (吉林大
学), 2012.
参考文献:
[21] PANG J F, ZHENG M Y, ZHANG T, et al. Catalytic conversion of
[1] HOLM M S, SARAVANAMURUGAN S, TAARNING E. Conversion carbohydrates to methyl lactate using isolated tin sites in SBA-15[J].
of sugars to lactic acid derivatives using heterogeneous zeotype ChemistrySelect, 2017, 2(1): 309-314.
catalysts[J]. Science, 2010, 328: 602-605. [22] YANG X M, WU L, XU J, et al. Conversion of dihydroxyacetone to
[2] DUSSELIER M, WOUWE P V, DEWAELE A, et al. Lactic acid as a methyl lactate catalyzed by highly active hierarchical Sn-USY at room
platform chemical in the biobased economy: The role of chemocatalysis temperature[J]. Catal Sci Technol, 2016, 6: 1757-1763.