Page 82 - 《精细化工》2020年第11期
P. 82

·2228·                            精细化工   FINE CHEMICALS                                 第 37 卷

            防止芥子气过度氧化到有毒的砜产物,是一种绿色                             [14]  LIVINGSTON S  R, LANDRY C C. Oxidation of a mustard gas
                                                                   analogue using an aldehyde/O 2 system catalyzed by V-doped
            高效的降解过程。POMs 具有多种化学活性位点、
                                                                   mesoporous silica[J]. J Am Chem Soc, 2008, 130(40): 13214-13215.
            快速且可逆的多电子、高稳定性,是催化降解芥子                             [15]  GIANNAKOUDAKIS D A, COLON-ORTIZ J, LANDERS J, et al.
                                                        1          Polyoxometalate hybrid catalyst for detection and photodecomposition
            气的重要研究方向。通过使用 MOFs 对 HD 产生 O 2
                                                                   of mustard gas surrogate vapors[J]. Applied Surface Science, 2019,
            光氧化,可以实现对产物选择性的控制。MOFs 的                               467: 428-438.
            研究将集中在新型材料的设计开发上。可从修改已                             [16]  LI X Q, DONG  J, LIU H F,  et al. Recoverable amphiphilic
                                                                   polyoxoniobates catalyzing oxidative and hydrolytic decontamination
            存在的 MOFs 出发,将合适的功能基团引入已存在                              of chemical warfare agent simulants in emulsion[J]. Journal of
            的 MOFs 中制备催化材料;或由 MOFs 的降解能力                           Hazardous Materials, 2018, 344: 994-999.
                                                               [17]  DONG J, LV  H J, SUN X R,  et al. A versatile self-detoxifying
            出发,在合成过程中制备催化材料。这需要合理设                                 material based on immobilized polyoxoniobate for decontamination
            计 MOFs 的拓扑结构并且充分了解新材料的吸附动                              of chemical warfare  agent simulants[J]. Chemistry, 2018, 24(72):
                                                                   19208-19215.
            力学。尽管 POMs、MOFs 催化剂具有对芥子气很好                        [18]  SON Y R, RYU S G, KIM H S. Rapid adsorption and removal of
            的降解效果,但这些方法目前仅在毫克级别上可行,                                sulfur mustard with zeolitic imidazolate frameworks ZIF-8 and
                                                                   ZIF-67[J]. Microporous and Mesoporous Materials, 2020, 293: 109819.
            仍需要一定时间研究来降低成本才可以在实际中应                             [19]  GIANNAKOUDAKIS D A, BANDOSZ T J. Defectous UiO-66
            用去除芥子气。                                                MOF nanocomposites as reactive media of superior protection against
                                                                   toxic vapors[J]. ACS Appl Mater  Interfaces, 2020, 12(13):  14678-
            参考文献:                                                  14689.
                                                               [20]  LIU Y Y, BURU C T, HOWARTH A J, et al. Efficient and selective
            [1]   PICARD B, CHATAIGNER I, MADDALUNO J, et al. Introduction   oxidation of sulfur  mustard using singlet oxygen generated by a
                 to chemical warfare agents, relevant simulants and modern neutralisation   pyrene-based metal-organic framework[J]. J Mater Chem  A Mater,
                 methods[J]. Org Biomol Chem, 2019, 17(27): 6528-6537.     2016, 4(36): 13809-13813.
            [2]   SAXENA A, SRIVASTAVA A K, SINGH B, et al. Removal of sulphur   [21]  FLORENT M,  GIANNAKOUDAKIS D A, WALLACE R,  et al.
                 mustard, sarin and simulants on impregnated silica nanoparticles[J].   Mixed CuFe and ZnFe (hydr)oxides as reactive adsorbents of chemical
                 Journal of Hazardous Materials, 2012, 211: 226-232.     warfare  agent surrogates[J]. Journal of Hazardous Materials, 2017,
            [3]   LI Y Q, GAO Q,  ZHOU Y S,  et al. Significant enhancement in   329: 141-149.
                 hydrolytic degradation of sulfur mustard promoted by silver   [22]  RINGENBACH  C R, LIVINGSTON S R, KUMAR D,  et al.
                 nanoparticles in the Ag  NPs@HKUST-1 composites[J]. J Hazard   Vanadium-doped acid-prepared  mesoporous silica:  Synthesis,
                 Mater, 2018, 358: 113-121.                        characterization, and catalytic studies on the oxidation of a mustard
            [4]   SMOLKIN  B, LEVI N, KARTON-LIFSHIN N,  et al. Oxidative   gas analogue[J]. Chemistry of Materials, 2005, 17(22): 5580-5586.
                 detoxification of  sulfur-containing chemical warfare  agents by   [23]  KUMAR J P, PVRK R, PRASAD  G K  et al. Montmorillonites
                 electrophilic iodine[J]. J Org Chem, 2018, 83(22): 13949-13955.     supported with metal oxide nanoparticles for decontamination of
            [5]   LIANG H  X,  YAO A N, JIAO  X  L,  et al. Fast and sustained   sulfur mustard[J]. Applied Clay Science, 2015, 116/117: 263-272.
                 degradation  of chemical warfare agent simulants  using flexible   [24]  KIM K, TSAY O G, ATWOOD D A, et al. Destruction and detection
                 self-supported  metal-organic framework filters[J]. ACS  Appl Mater   of chemical warfare agents[J]. Chem Rev, 2011, 111(9): 5345-5403.
                 Interfaces, 2018, 10(24): 20396-20403.        [25]  ŠTENGL  V, KRÁLOVÁ D, OPLUŠTIL F,  et al. Mesoporous
            [6]   RYU S Y, CHUNG J W, KWAK S Y. Tunable multilayer assemblies   manganese oxide for warfare agents degradation[J]. Microporous and
                 of nanofibrous composite mats as permeable protective materials   Mesoporous Materials, 2012, 156: 224-232.
                 against chemical  warfare  agents[J]. RSC Advances, 2017, 7(16):   [26]  ŠTENGL V, GRYGAR T M, BLUDSKÁ J, et al. Mesoporous iron-
                 9964-9974.                                        manganese oxides for sulphur mustard and soman degradation[J].
            [7]   SMITH B M. Catalytic  methods for the destruction of chemical   Materials Research Bulletin, 2012, 47(12): 4291-4299.
                 warfare agents under ambient conditions[J]. Chemical Society   [27]  LIU Y B, DU X Y, WANG J N, et al. High efficient detoxification of
                 Reviews, 2008, 37(3): 470-478.                    mustard gas surrogate based on nanofibrous fabric[J]. Journal of
            [8]   VELLINGIRI K, PHILIP L, KIM K H. Metal-organic frameworks as   Hazardous Materials, 2018, 347: 25-30.
                 media for the catalytic degradation of chemical  warfare  agents[J].   [28]  LIU F, LU  Q F, JIAO X L,  et al. Fabrication of nylon-6/POMs
                 Coordination Chemistry Reviews, 2017, 353: 159-179.   nanofibrous membranes and the degradation of mustard  stimulant
            [9]   BOBBITT N S,  MENDONCA M  L, HOWARTH  A J,  et al.   research[J]. RSC Advances, 2014, 4(78): 41271-41276.
                 Metal-organic frameworks for the removal of toxic industrial   [29]  LONG D L, BURKHOLDER E, CRONIN L. Polyoxometalate clusters,
                 chemicals  and chemical  warfare agents[J]. Chem Soc Rev, 2017,   nanostructures and materials: From self assembly to designer materials
                 46(11): 3357-3385.                                and devices[J]. Chemical Society Reviews, 2006, 36: 105-121.
            [10]  JAGANATHAN S K, MANI M P, ISMAIL A F, et al. Manufacturing   [30]  MENG L, XU C, REN J S,  et al. Photodegradation of  β-sheet
                 and characterization of novel electrospun composite comprising   amyloid fibrils associated with Alzheimer's disease  by using
                 polyurethane and mustard oil  scaffold with enhanced blood   polyoxometalates as photocatalysts[J]. Chemical  Communications,
                 compatibility[J]. Polymers, 2017, 9(12): 163.     2013, 49(97): 11394-11396.
            [11]  WAGNER G W, BARTRAM P W,  KOPER O,  et al. Reactions of   [31]  TANG Y J, GAO M R, LIU C H, et al. Porous molybdenum-based
                 VX, GD,  and HD with nanosize  MgO[J]. Journal of Physical   hybrid catalysts for highly efficient hydrogen evolution[J]. Angewandte
                 Chemistry B, 1999, 103(16): 3225-3228.            Chemie International Edition, 2015, 54(44): 12928-12932.
            [12]  LIU Y  Y, HOWARTH A  J, VERMEULEN  N  A,  et al. Catalytic   [32]  WANG S S,  YANG G Y. Recent advances in polyoxometalate-
                 degradation of chemical warfare agents and their simulants by   catalyzed reactions[J]. Chemical Reviews, 2015, 115(11): 4893.
                 metal-organic frameworks[J]. Coordination Chemistry  Reviews,   [33]  LUO B  L,  XU L. POM-FLPs:[Mo 3] n-polyoxometalate bifunctional
                                                                                         Ⅳ
                                                                            Ⅳ
                                                                                                         Ⅳ
                                                                                                            Ⅳ
                 2017, 346: 101-111.                               catalysis by[Mo 3] n-O m Lewis pairs frustrated by triangular Mo -Mo
            [13]  LIU Y B, DU X Y, WANG J N, et al. High efficient detoxification of   bonds[J]. Dalton Transactions, 2019, 48(20): 6892- 6898.
                 mustard gas surrogate based on  nanofibrous  fabric[J]. J Hazard
                 Mater, 2018, 347: 25-30.                                                    (下转第 2237 页)
   77   78   79   80   81   82   83   84   85   86   87