Page 82 - 《精细化工》2020年第11期
P. 82
·2228· 精细化工 FINE CHEMICALS 第 37 卷
防止芥子气过度氧化到有毒的砜产物,是一种绿色 [14] LIVINGSTON S R, LANDRY C C. Oxidation of a mustard gas
analogue using an aldehyde/O 2 system catalyzed by V-doped
高效的降解过程。POMs 具有多种化学活性位点、
mesoporous silica[J]. J Am Chem Soc, 2008, 130(40): 13214-13215.
快速且可逆的多电子、高稳定性,是催化降解芥子 [15] GIANNAKOUDAKIS D A, COLON-ORTIZ J, LANDERS J, et al.
1 Polyoxometalate hybrid catalyst for detection and photodecomposition
气的重要研究方向。通过使用 MOFs 对 HD 产生 O 2
of mustard gas surrogate vapors[J]. Applied Surface Science, 2019,
光氧化,可以实现对产物选择性的控制。MOFs 的 467: 428-438.
研究将集中在新型材料的设计开发上。可从修改已 [16] LI X Q, DONG J, LIU H F, et al. Recoverable amphiphilic
polyoxoniobates catalyzing oxidative and hydrolytic decontamination
存在的 MOFs 出发,将合适的功能基团引入已存在 of chemical warfare agent simulants in emulsion[J]. Journal of
的 MOFs 中制备催化材料;或由 MOFs 的降解能力 Hazardous Materials, 2018, 344: 994-999.
[17] DONG J, LV H J, SUN X R, et al. A versatile self-detoxifying
出发,在合成过程中制备催化材料。这需要合理设 material based on immobilized polyoxoniobate for decontamination
计 MOFs 的拓扑结构并且充分了解新材料的吸附动 of chemical warfare agent simulants[J]. Chemistry, 2018, 24(72):
19208-19215.
力学。尽管 POMs、MOFs 催化剂具有对芥子气很好 [18] SON Y R, RYU S G, KIM H S. Rapid adsorption and removal of
的降解效果,但这些方法目前仅在毫克级别上可行, sulfur mustard with zeolitic imidazolate frameworks ZIF-8 and
ZIF-67[J]. Microporous and Mesoporous Materials, 2020, 293: 109819.
仍需要一定时间研究来降低成本才可以在实际中应 [19] GIANNAKOUDAKIS D A, BANDOSZ T J. Defectous UiO-66
用去除芥子气。 MOF nanocomposites as reactive media of superior protection against
toxic vapors[J]. ACS Appl Mater Interfaces, 2020, 12(13): 14678-
参考文献: 14689.
[20] LIU Y Y, BURU C T, HOWARTH A J, et al. Efficient and selective
[1] PICARD B, CHATAIGNER I, MADDALUNO J, et al. Introduction oxidation of sulfur mustard using singlet oxygen generated by a
to chemical warfare agents, relevant simulants and modern neutralisation pyrene-based metal-organic framework[J]. J Mater Chem A Mater,
methods[J]. Org Biomol Chem, 2019, 17(27): 6528-6537. 2016, 4(36): 13809-13813.
[2] SAXENA A, SRIVASTAVA A K, SINGH B, et al. Removal of sulphur [21] FLORENT M, GIANNAKOUDAKIS D A, WALLACE R, et al.
mustard, sarin and simulants on impregnated silica nanoparticles[J]. Mixed CuFe and ZnFe (hydr)oxides as reactive adsorbents of chemical
Journal of Hazardous Materials, 2012, 211: 226-232. warfare agent surrogates[J]. Journal of Hazardous Materials, 2017,
[3] LI Y Q, GAO Q, ZHOU Y S, et al. Significant enhancement in 329: 141-149.
hydrolytic degradation of sulfur mustard promoted by silver [22] RINGENBACH C R, LIVINGSTON S R, KUMAR D, et al.
nanoparticles in the Ag NPs@HKUST-1 composites[J]. J Hazard Vanadium-doped acid-prepared mesoporous silica: Synthesis,
Mater, 2018, 358: 113-121. characterization, and catalytic studies on the oxidation of a mustard
[4] SMOLKIN B, LEVI N, KARTON-LIFSHIN N, et al. Oxidative gas analogue[J]. Chemistry of Materials, 2005, 17(22): 5580-5586.
detoxification of sulfur-containing chemical warfare agents by [23] KUMAR J P, PVRK R, PRASAD G K et al. Montmorillonites
electrophilic iodine[J]. J Org Chem, 2018, 83(22): 13949-13955. supported with metal oxide nanoparticles for decontamination of
[5] LIANG H X, YAO A N, JIAO X L, et al. Fast and sustained sulfur mustard[J]. Applied Clay Science, 2015, 116/117: 263-272.
degradation of chemical warfare agent simulants using flexible [24] KIM K, TSAY O G, ATWOOD D A, et al. Destruction and detection
self-supported metal-organic framework filters[J]. ACS Appl Mater of chemical warfare agents[J]. Chem Rev, 2011, 111(9): 5345-5403.
Interfaces, 2018, 10(24): 20396-20403. [25] ŠTENGL V, KRÁLOVÁ D, OPLUŠTIL F, et al. Mesoporous
[6] RYU S Y, CHUNG J W, KWAK S Y. Tunable multilayer assemblies manganese oxide for warfare agents degradation[J]. Microporous and
of nanofibrous composite mats as permeable protective materials Mesoporous Materials, 2012, 156: 224-232.
against chemical warfare agents[J]. RSC Advances, 2017, 7(16): [26] ŠTENGL V, GRYGAR T M, BLUDSKÁ J, et al. Mesoporous iron-
9964-9974. manganese oxides for sulphur mustard and soman degradation[J].
[7] SMITH B M. Catalytic methods for the destruction of chemical Materials Research Bulletin, 2012, 47(12): 4291-4299.
warfare agents under ambient conditions[J]. Chemical Society [27] LIU Y B, DU X Y, WANG J N, et al. High efficient detoxification of
Reviews, 2008, 37(3): 470-478. mustard gas surrogate based on nanofibrous fabric[J]. Journal of
[8] VELLINGIRI K, PHILIP L, KIM K H. Metal-organic frameworks as Hazardous Materials, 2018, 347: 25-30.
media for the catalytic degradation of chemical warfare agents[J]. [28] LIU F, LU Q F, JIAO X L, et al. Fabrication of nylon-6/POMs
Coordination Chemistry Reviews, 2017, 353: 159-179. nanofibrous membranes and the degradation of mustard stimulant
[9] BOBBITT N S, MENDONCA M L, HOWARTH A J, et al. research[J]. RSC Advances, 2014, 4(78): 41271-41276.
Metal-organic frameworks for the removal of toxic industrial [29] LONG D L, BURKHOLDER E, CRONIN L. Polyoxometalate clusters,
chemicals and chemical warfare agents[J]. Chem Soc Rev, 2017, nanostructures and materials: From self assembly to designer materials
46(11): 3357-3385. and devices[J]. Chemical Society Reviews, 2006, 36: 105-121.
[10] JAGANATHAN S K, MANI M P, ISMAIL A F, et al. Manufacturing [30] MENG L, XU C, REN J S, et al. Photodegradation of β-sheet
and characterization of novel electrospun composite comprising amyloid fibrils associated with Alzheimer's disease by using
polyurethane and mustard oil scaffold with enhanced blood polyoxometalates as photocatalysts[J]. Chemical Communications,
compatibility[J]. Polymers, 2017, 9(12): 163. 2013, 49(97): 11394-11396.
[11] WAGNER G W, BARTRAM P W, KOPER O, et al. Reactions of [31] TANG Y J, GAO M R, LIU C H, et al. Porous molybdenum-based
VX, GD, and HD with nanosize MgO[J]. Journal of Physical hybrid catalysts for highly efficient hydrogen evolution[J]. Angewandte
Chemistry B, 1999, 103(16): 3225-3228. Chemie International Edition, 2015, 54(44): 12928-12932.
[12] LIU Y Y, HOWARTH A J, VERMEULEN N A, et al. Catalytic [32] WANG S S, YANG G Y. Recent advances in polyoxometalate-
degradation of chemical warfare agents and their simulants by catalyzed reactions[J]. Chemical Reviews, 2015, 115(11): 4893.
metal-organic frameworks[J]. Coordination Chemistry Reviews, [33] LUO B L, XU L. POM-FLPs:[Mo 3] n-polyoxometalate bifunctional
Ⅳ
Ⅳ
Ⅳ
Ⅳ
2017, 346: 101-111. catalysis by[Mo 3] n-O m Lewis pairs frustrated by triangular Mo -Mo
[13] LIU Y B, DU X Y, WANG J N, et al. High efficient detoxification of bonds[J]. Dalton Transactions, 2019, 48(20): 6892- 6898.
mustard gas surrogate based on nanofibrous fabric[J]. J Hazard
Mater, 2018, 347: 25-30. (下转第 2237 页)