Page 91 - 《精细化工》2020年第11期
P. 91
第 11 期 张素雅,等: 光气检测用小分子荧光探针的研究进展 ·2237·
[33] LIU P L, LIU N, LIU C L, et al. A colorimetric and ratiometric 52: 12350-12352.
fluorescent probe with ultralow detection limit and high selectivity [44] CHEN L Y, WU D, KIM J M, et al. An ESIPT-based fluorescence
for phosgene sensing[J]. Dyes and Pigments, 2019, 163: 489-495. probe for colorimetric, ratiometric, and selective detection of
[34] YANG L, SUN Z W, LI Z, et al. A novel NBD-based fluorescent phosgene in solutions and the gas phase[J]. Analytical Chemistry,
turn-on probe for detection of phosgene in solution and the gas 2017, 89: 12596-12601.
phase[J]. Analytical Methods, 2019, 11: 4600-4608. [45] GANGOPADHYAY A, MAHAPATRA A K. A potent colorimetric
[35] HU Q, DUAN C, WU J J, et al. Colorimetric and ratiometric and fluorogenic phosgene probe based on dual photophysical
chemosensor for visual detection of gaseous phosgene based on processes: PET attenuation and ICT reversal[J]. New Journal of
anthracene carboxyimide membrane[J]. Analytical Chemistry, 2018, Chemistry, 2019, 43: 14991-14996.
90: 8686-8691. [46] FENG W Y, GONG S Y, ZHOU E B, et al. Readily prepared
[36] CAO T, GONG D, ZHENG L, et al. A BODIPY-based asymmetric iminocoumarin for rapid, colorimetric and ratiometric fluorescent
monosubstituted (turn-on) and symmetric disubstituted (ratiometric) detection of phosgene[J]. Analytica Chimica Acta, 2018, 1029:
fluorescent probes for selective detection of phosgene in solution and 97-103.
gas phase[J]. Analytica Chimica Acta, 2019, 1078: 168-175. [47] WU C Y, XU H, LI Y Q, et al. An ESIPT-based fluorescent probe for
[37] KIM T I, HWANG B, BOUFFARD J, et al. Instantaneous the detection of phosgene in the solution and gas phases[J]. Talanta,
colorimetric and fluorogenic detection of phosgene with a meso- 2019, 200: 78-83.
oxime-BODIPY[J]. Analytical Chemistry, 2017, 89: 12837-12842. [48] WANG S L, LI C, SONG Q H. Fluorescent chemosensor for
[38] BAI L Y, FENG W Y, FENG G Q. An ultrasensitive fluorescent dual-channel discrimination between phosgene and triphosgene[J].
probe for phosgene detection in solution and in air[J]. Dyes and Analytical Chemistry, 2019, 91: 5690-5697.
Pigments, 2019, 163: 483-488. [49] WANG S, ZHU B T, WANG B Y, et al. A highly selective
[39] MAITI K, GHOSH D, MAITI R, et al. Ratiometric chemodosimeter: phenothiazine-based fluorescent chemosensor for phosgene[J]. Dyes
An organic-nanofiber platform for sensing lethal phosgene gas[J]. and Pigments, 2020, 173: 107933.
Journal of Materials Chemistry A, 2019, 7: 1756-1767. [50] DU M, HUO B L, LIU J M, et al. A turn-on fluorescent probe based
[40] HUANG Y L, YE W, SU Y T, et al. A naphthalimide-based probe for on Si-rhodamine for sensitive and selective detection of phosgene in
phosgene sensing based on the phosgene-induced beckmann solution and in the gas phase[J]. Journal of Materials Chemistry C,
rearrangement[J]. Dyes and Pigments, 2020, 173: 107854. 2018, 6: 10472-10479.
[41] CHEN L, WU D, LIM C S, et al. A two-photon fluorescent probe for [51] GANGOPADHYAY A, ALI S S, MAHAPATRA A K. A powerful
specific detection of hydrogen sulfide based on a familiar ESIPT turn-on fluorescent probe for phosgene: A primary amide strategically
fluorophore bearing AIE characteristics[J]. Chemical Communications, attached to an anthracene fluorophore[J]. Chemistry Select, 2019, 4:
2017, 53: 4791-4794. 8968-8972.
[42] LUO W F, LIU W S. A two-photon ratiometric ESIPT probe for the [52] KUNDU P, HWANG K C. Rational design of fluorescent phosgene
discrimination of different palladium species and its application in sensors[J]. Analytical Chemistry, 2012, 84: 4594-4597.
bioimaging[J]. Journal of Materials Chemistry B, 2016, 4: 3911- [53] KIM T I, KIM D, BOUFFARD J, et al. Rapid, specific, and
3915. ultrasensitive fluorogenic sensing of phosgene through an enhanced
[43] SEDGWICK A C, SUN X, KIM G, et al. Boronate based fluorescence PET mechanism[J]. Sensors and Actuators B: Chemical, 2019, 283:
(ESIPT) probe for peroxynitrite[J]. Chemical Communications, 2016, 458-462.
(上接第 2228 页) [41] LI H, WANG K C, SUN Y J, et al. Recent advances in gas storage
and separation using metal-organic frameworks[J]. Materials Today,
[34] SUN X R, DONG J, LI Z, et al. Mono-transition-metal-substituted 2018, 21(2): 108-121.
polyoxometalate intercalated layered double hydroxides for the [42] GAO H Y, LUAN Y, CHAIKITTIKUL K, et al. A facile in situ
catalytic decontamination of sulfur mustard simulant[J]. Dalton self-assembly strategy for large-scale fabrication of CHS@MOF
Transactions, 2019, 48(16): 5285-5291. yolk/shell structure and its catalytic application in a flow system[J].
[35] CHOI H, CHANG Y Y, KWON Y U, et al. Incorporation of ACS Applied Materials & Interfaces, 2015, 7(8): 4667-4674.
decavanadate ions into silica gels and mesostructured silica walls[J]. [43] LUSTIG W P, MUKHERJEE S, RUDD N D, et al. Metal-organic
Chemistry of Materials, 2003, 15(17): 3261-3267. frameworks: Functional luminescent and photonic materials for
[36] ZHANG Z, SADAKANE M, MURAYAMA T, et al. Tetrahedral sensing applications[J]. Chemical Society Reviews, 2017, 46(11):
connection of ε-Keggin-type polyoxometalates to form an all-inorganic 3242-3285.
octahedral molecular sieve with an intrinsic 3D pore system[J]. [44] JIN Z K, DONG W J, YANG M, et al. One-pot preparation of
Inorganic Chemistry, 2014, 53(2): 903-911. hierarchical nanosheet-constructed Fe 3O 4/MIL-88B(Fe) magnetic
[37] HAN Y K, XIAO Y, ZHANG Z J, et al. Synthesis of polyoxometalate- microspheres with high efficiency photocatalytic degradation of
polymer hybrid polymers and their hybrid vesicular assembly[J]. dye[J]. Chemcatchem, 2016, 8(22): 3510-3517.
Macromolecules, 2009, 42(17): 6543-6548. [45] LOPEZ-MAYA E, MONTORO C, RODRIGUEZ-ALBELO L M, et
[38] WAGNER G W, PROCELL L R, SORRICK D C, et al. All-weather al. Textile/metal-organic-framework composites as self-detoxifying
hydrogen peroxide-based decontamination of CBRN contaminants[J]. filters for chemical-warfare agents[J]. Angewandte Chemie-International
Industrial & Engineering Chemistry Research, 2010, 49(7): 3099- Edition, 2015, 54(23): 6790-6794.
3105. [46] LIU Y Y, HOWARTH A J, HUPP J T, et al. Selective photooxidation
[39] HOU Y J, AN H Y, ZHANG Y M, et al. Rapid destruction of two of a mustard-gas simulant catalyzed by a porphyrinic metal-organic
types of chemical warfare agent simulants by hybrid polyoxomolybdates framework[J]. Angewandte Chemie-International Edition, 2015, 54(31):
modified by carboxylic acid ligands[J]. ACS Catalysis, 2018, 8(7): 9001-9005.
6062-6069. [47] BURU C T, MAJEWSKI M B, HOWARTH A J, et al. Improving the
[40] HAN B, OU X W, DENG Z Q, et al. Nickel metal-organic efficiency of mustard gas simulant detoxification by tuning the
frameworks monolayers for photoreduction of diluted CO 2: Metal- singlet oxygen quantum yield in metal-organic frameworks and their
node-dependent activity and selectivity[J]. Angew Chem Int Ed Engl, corresponding thin films[J]. ACS Applied Materials & Interfaces,
2018, 57(51): 16811-16815. 2018, 10(28): 23802-23806.