Page 91 - 《精细化工》2020年第11期
P. 91

第 11 期                      张素雅,等:  光气检测用小分子荧光探针的研究进展                                   ·2237·


            [33]  LIU P L, LIU N,  LIU C L,  et al. A colorimetric  and ratiometric   52: 12350-12352.
                 fluorescent probe with ultralow detection limit and high selectivity   [44]  CHEN L Y, WU D, KIM J M, et al. An ESIPT-based fluorescence
                 for phosgene sensing[J]. Dyes and Pigments, 2019, 163: 489-495.     probe for colorimetric, ratiometric,  and selective detection  of
            [34]  YANG L, SUN Z  W, LI Z,  et al. A  novel NBD-based fluorescent   phosgene in solutions and the gas phase[J]. Analytical  Chemistry,
                 turn-on probe for  detection of phosgene in solution and the gas   2017, 89: 12596-12601.
                 phase[J]. Analytical Methods, 2019, 11: 4600-4608.     [45]  GANGOPADHYAY A, MAHAPATRA A K. A potent colorimetric
            [35]  HU Q,  DUAN C,  WU J J,  et al. Colorimetric and  ratiometric   and fluorogenic phosgene probe  based on dual photophysical
                 chemosensor  for visual detection of  gaseous  phosgene based on   processes:  PET attenuation and ICT reversal[J]. New Journal of
                 anthracene carboxyimide membrane[J]. Analytical Chemistry, 2018,   Chemistry, 2019, 43: 14991-14996.
                 90: 8686-8691.                                [46]  FENG  W Y, GONG S Y, ZHOU  E B,  et al. Readily prepared
            [36]  CAO T, GONG D, ZHENG L, et al. A BODIPY-based asymmetric   iminocoumarin for rapid, colorimetric and ratiometric  fluorescent
                 monosubstituted (turn-on) and symmetric disubstituted (ratiometric)   detection of phosgene[J]. Analytica  Chimica Acta, 2018, 1029:
                 fluorescent probes for selective detection of phosgene in solution and   97-103.
                 gas phase[J]. Analytica Chimica Acta, 2019, 1078: 168-175.     [47]  WU C Y, XU H, LI Y Q, et al. An ESIPT-based fluorescent probe for
            [37]  KIM T I, HWANG B, BOUFFARD J,  et al. Instantaneous   the detection of phosgene in the solution and gas phases[J]. Talanta,
                 colorimetric and fluorogenic detection of phosgene with a  meso-   2019, 200: 78-83.
                 oxime-BODIPY[J]. Analytical Chemistry, 2017, 89: 12837-12842.     [48]  WANG S L,  LI C, SONG Q  H.  Fluorescent chemosensor for
            [38]  BAI L  Y, FENG  W  Y, FENG G Q. An ultrasensitive fluorescent   dual-channel discrimination between phosgene and triphosgene[J].
                 probe for phosgene detection in solution and  in air[J].  Dyes and   Analytical Chemistry, 2019, 91: 5690-5697.
                 Pigments, 2019, 163: 483-488.                 [49]  WANG  S, ZHU B  T, WANG  B Y,  et al.  A highly selective
            [39]  MAITI K, GHOSH D, MAITI R, et al. Ratiometric chemodosimeter:   phenothiazine-based fluorescent chemosensor for phosgene[J]. Dyes
                 An organic-nanofiber platform for sensing lethal  phosgene gas[J].   and Pigments, 2020, 173: 107933.
                 Journal of Materials Chemistry A, 2019, 7: 1756-1767.     [50]  DU M, HUO B L, LIU J M, et al. A turn-on fluorescent probe based
            [40]  HUANG Y L, YE W, SU Y T, et al. A naphthalimide-based probe for   on Si-rhodamine for sensitive and selective detection of phosgene in
                 phosgene sensing based on the phosgene-induced beckmann   solution and in the gas phase[J]. Journal of Materials Chemistry C,
                 rearrangement[J]. Dyes and Pigments, 2020, 173: 107854.     2018, 6: 10472-10479.
            [41]  CHEN L, WU D, LIM C S, et al. A two-photon fluorescent probe for   [51]  GANGOPADHYAY A, ALI S S, MAHAPATRA  A K.  A powerful
                 specific detection  of hydrogen sulfide based on a familiar ESIPT   turn-on fluorescent probe for phosgene: A primary amide strategically
                 fluorophore bearing AIE characteristics[J]. Chemical Communications,   attached to an anthracene fluorophore[J]. Chemistry Select, 2019, 4:
                 2017, 53: 4791-4794.                              8968-8972.
            [42]  LUO W F, LIU W S. A two-photon ratiometric ESIPT probe for the   [52]  KUNDU P, HWANG K C. Rational design of fluorescent phosgene
                 discrimination  of  different palladium species and its application in   sensors[J]. Analytical Chemistry, 2012, 84: 4594-4597.
                 bioimaging[J]. Journal of Materials Chemistry B, 2016, 4: 3911-   [53]  KIM T I, KIM D, BOUFFARD J,  et al. Rapid, specific, and
                 3915.                                             ultrasensitive fluorogenic sensing of phosgene through an enhanced
            [43]  SEDGWICK A C, SUN X, KIM G, et al. Boronate based fluorescence   PET mechanism[J]. Sensors and Actuators B: Chemical, 2019, 283:
                 (ESIPT) probe for peroxynitrite[J]. Chemical Communications, 2016,   458-462.


            (上接第 2228 页)                                       [41]  LI H, WANG K C, SUN Y J, et al. Recent advances in gas storage
                                                                   and separation using metal-organic frameworks[J]. Materials Today,
            [34]  SUN X R, DONG J, LI Z, et al. Mono-transition-metal-substituted   2018, 21(2): 108-121.
                 polyoxometalate intercalated layered double hydroxides for the   [42]  GAO  H Y,  LUAN Y,  CHAIKITTIKUL  K,  et al. A facile  in situ
                 catalytic decontamination of sulfur  mustard simulant[J].  Dalton   self-assembly strategy for large-scale fabrication of CHS@MOF
                 Transactions, 2019, 48(16): 5285-5291.            yolk/shell structure and its catalytic application in a flow system[J].
            [35]  CHOI H, CHANG Y Y, KWON Y U,  et al. Incorporation of   ACS Applied Materials & Interfaces, 2015, 7(8): 4667-4674.
                 decavanadate ions into silica gels and mesostructured silica walls[J].   [43]  LUSTIG W P, MUKHERJEE S, RUDD N D,  et al. Metal-organic
                 Chemistry of Materials, 2003, 15(17): 3261-3267.     frameworks:  Functional  luminescent and photonic materials for
            [36]  ZHANG Z, SADAKANE M, MURAYAMA T,  et al. Tetrahedral   sensing applications[J]. Chemical Society Reviews, 2017, 46(11):
                 connection of ε-Keggin-type polyoxometalates to form an all-inorganic   3242-3285.
                 octahedral molecular sieve with an intrinsic 3D pore system[J].   [44]  JIN Z K, DONG  W J, YANG M,  et al. One-pot preparation of
                 Inorganic Chemistry, 2014, 53(2): 903-911.        hierarchical nanosheet-constructed  Fe 3O 4/MIL-88B(Fe) magnetic
            [37]  HAN Y K, XIAO Y, ZHANG Z J, et al. Synthesis of polyoxometalate-   microspheres with high efficiency photocatalytic degradation of
                 polymer hybrid polymers and their hybrid vesicular assembly[J].   dye[J]. Chemcatchem, 2016, 8(22): 3510-3517.
                 Macromolecules, 2009, 42(17): 6543-6548.      [45]  LOPEZ-MAYA E, MONTORO C, RODRIGUEZ-ALBELO L M, et
            [38]  WAGNER G W, PROCELL L R, SORRICK D C, et al. All-weather   al. Textile/metal-organic-framework composites as self-detoxifying
                 hydrogen peroxide-based decontamination of CBRN contaminants[J].   filters for chemical-warfare agents[J]. Angewandte Chemie-International
                 Industrial & Engineering Chemistry Research, 2010, 49(7): 3099-   Edition, 2015, 54(23): 6790-6794.
                 3105.                                         [46]  LIU Y Y, HOWARTH A J, HUPP J T, et al. Selective photooxidation
            [39]  HOU Y J, AN H Y, ZHANG Y M, et al. Rapid destruction of two   of a mustard-gas simulant catalyzed by a porphyrinic metal-organic
                 types of chemical warfare agent simulants by hybrid polyoxomolybdates   framework[J]. Angewandte Chemie-International Edition, 2015, 54(31):
                 modified by carboxylic acid ligands[J]. ACS  Catalysis, 2018, 8(7):   9001-9005.
                 6062-6069.                                    [47]  BURU C T, MAJEWSKI M B, HOWARTH A J, et al. Improving the
            [40]  HAN  B, OU X  W, DENG Z  Q,  et al. Nickel  metal-organic   efficiency of  mustard gas simulant detoxification by tuning the
                 frameworks monolayers for photoreduction of diluted CO 2: Metal-   singlet oxygen quantum yield in metal-organic frameworks and their
                 node-dependent activity and selectivity[J]. Angew Chem Int Ed Engl,   corresponding thin films[J]. ACS Applied Materials &  Interfaces,
                 2018, 57(51): 16811-16815.                        2018, 10(28): 23802-23806.
   86   87   88   89   90   91   92   93   94   95   96