Page 155 - 《精细化工》2020年第12期
P. 155
第 12 期 李静静,等: 改性纳米多孔钴低温催化 CO 2 加氢制甲醇 ·2517·
由图 12 可见,当反应温度低于 200 ℃时,延 into methanol[J]. Chem, 2018, 4: 613-625.
[10] HARTADI Y, WIDMANN D, BEHM R J. CO 2 hydrogenation to
长反应时间至 100 min 未检测到产物生成,当反应
methanol on supported Au catalysts under moderate reaction
–1
温度高于 200 ℃时,出现在 3015 cm 处的 v(CH 4 ) conditions: Support and particle size effects[J]. ChemSusChem,
–1
和 1304、1341、1507、1545 cm 处羧酸盐(*HOCO) 2015, 8(3): 456-465.
[11] LV J K, RONG Z M, SUN L M, et al. Catalytic conversion of
中(OCO) [23] 的不对称、对称拉伸吸收峰。*HOCO biomass-derived levulinic acid into alcohols over nanoporous Ru
作为中间产物,表明 CO 2 在催化剂 NP-Co 3.00 Cr 上形 catalyst[J]. Catalysis Science Technology, 2018, 8(4): 975-979.
[12] LU J Q, LIU X, YU G Q, et al. Selective hydrodeoxygenation of
成 CH 3 OH 的过程经历了 RWGS 和 CO 氢化过程。
guaiacol to cyclohexanol catalyzed by canoporous nickel[J].
Catalysis Letters, 2020, 150: 837-848.
3 结论 [13] BANSODE A, URAKAWA A. Towards full one-pass conversion of
carbon dioxide to methanol and methanol-derived products[J] Journal
制备了 NP-Co 及其改性催化剂 NP-Co 3.00 Cr 用 of Catalysis, 2014, 309: 66-70.
[14] WITOON T, NUMPILAI T, PHONGAMWANG T, et al. Enhanced
于 CO 2 加氢制 CH 3 OH。在低温下,NP-Co 3.00 Cr 的 activity, selectivity and stability of a CuO-ZnO-ZrO 2 catalyst by
催化活性明显高于 NP-Co,改性催化剂制 CH 3 OH adding graphene oxide for CO 2 hydrogenation to methanol[J].
Chemical Engineering Journal, 2018, 334: 1781-1791.
的 E a 大幅降低。低温有利于 CH 3 OH 的生成,在 60 ℃ [15] JING M J, ZHOU M J, LI G Y, et al. Graphene-embedded Co 3O 4
下, CH 3 OH 选择性 高达 92.8% ,时间收 率 rose-spheres for enhanced performance in lithium ion batteries[J]
106.4 µmol/(g Cat ·h),而在相同的反应条件下,使用 ACS Applied Materials Interfaces, 2017, 9(11): 9662-9668.
[16] WANG L X, WANG L, ZHANG J, et al. Selective hydrogenation of
0
NP-Co 未观察到 CH 3 OH 的生成。Co 与 CrO x 的协 CO 2 to ethanol over cobalt catalysts[J]. Angewandte Chemie
同作用有利于 CO 2 与 NP-Co 3.00 Cr 表面羟基的强相互 International Edition, 2018, 57(21): 6104-6108.
[17] HOCH L B, WOOD T E, O'BRINE P G, et al. The rational design of
作用,降低反应能垒、提高活性。CO 2 通过*HOCO a single-component photocatalyst for gas-phase CO 2 reduction using
中间体转化为 CH 3 OH,经历了 RWGS 和 CO 氢化过 both UV and visible light[J]. Advanced Science, 2014, 1(1): 1400013.
程。去合金过程中 Al 元素的过度蚀刻导致催化剂结 [18] CONG Y Q, CHEN M M, XU T, et al. Tantalum and aluminum
co-doped iron oxide as a robust photocatalyst for water oxidation[J].
构不能稳定保持,改变 Al 相对含量、调节其脱除速 Applied Catalysis B: Environmental, 2014, 147: 733-740.
度等增加 NP-Co 稳定性的改进工作在进行之中。 [19] CUI X, GAO P, LI S G, et al. Selective production of aromatics
directly from carbon dioxide hydrogenation[J]. ACS Catalysis, 2019,
参考文献: 9(5): 3866-3876.
[20] KATTEL S, YAN B H, CHEN J G, et al. CO 2 hydrogenation on Pt,
[1] WANG P F (王鹏飞), ZHA F (查飞), CHANG Y (常玥), et al. Pt/SiO 2 and Pt/TiO 2: Importance of synergy between Pt and oxide
Hydrogenation of carbon dioxide to light olefins over CuO- support[J]. Journal of Catalysis, 2016, 343: 115-126.
ZnO/(SAPO-34)-kaolin catalyst[J]. Fine Chemicals (精细化工), [21] GAIKWAD R, BANSODE A, URAKAWA A. High-pressure
2017, 34(6): 662-668. advantages in stoichiometric hydrogenation of carbon dioxide to
[2] YANG A M (杨爱梅), TIAN H F (田海峰), ZHA F (查飞), et al. methanol[J]. Journal of Catalysis, 2016, 343: 127-132.
Preparation of HZSM-5 of different morphologies and its application [22] DU X L, JIANG Z, SU D S, et al. Research progress on the indirect
in the catalytic synthesis of dimethyl ether from CO 2 hydrogenation[J]. hydrogenation of carbon dioxide to methanol[J]. ChemSusChem,
Fine Chemicals (精细化工), 2015, 32(4): 416-421. 2016, 9(4): 322-332.
[3] DANG S S, YANG H Y, GAO P, et al. A review of research [23] GUO Y L, GUO X W, SONG C S, et al. Capsule-structured
progress on heterogeneous catalysts for methanol synthesis from copper-zinc catalyst for highly efficient hydrogenation of carbon
carbon dioxide hydrogenation[J]. Catalysis Today, 2019, 330(15): dioxide to methanol[J]. ChemSusChem. 2019, 12(22): 4916-4926.
61-75. [24] CHEN Y, CHIO S, THOMPSON L, et al. Low-temperature CO 2
[4] ALVAREZ A, BANSODE A, URAKAWA A, et al. Challenges in hydrogenation to liquid products via a heterogeneous cascade
the greener production of formates/formic acid, methanol, and DME catalytic system[J]. ACS Catalysis, 2015, 5(3): 1717-1725.
by heterogeneously catalyzed CO 2 hydrogenation processes[J]. [25] GAO P, ZHONG L S, ZHANG L N, et al. Yttrium oxide modified
Chemical Reviews, 2017, 117(14): 9804-9838. Cu/ZnO/Al 2O 3 catalysts via hydrotalcite-like precursors for CO 2
[5] NOH G, LAM E, ALFKE J L, et al. Selective hydrogenation of CO 2 hydrogenation to methanol[J]. Catalysis Science of Technology,
Ⅳ
to CH 3OH on supported Cu nanoparticles promoted by isolated Ti 2015, 5(9): 4365-4377.
surface sites on SiO 2[J]. ChemSusChem, 2019, 12(5): 968-972. [26] WANG Y H, KATTEL S, GAO W G, et al. Exploring the ternary
[6] CHEN Y, CHOI S, TTOMPSON L T. Low temperature CO 2 interactions in Cu-ZnO-ZrO 2 catalysts for efficient CO 2 hydrogenation
hydrogenation to alcohols and hydrocarbons over Mo 2C supported to methanol[J]. Nature Communication, 2019, 10 : 1166.
metal catalysts[J]. Journal of Catalysis, 2016, 343: 147-156. [27] TISSERAUD C, COMMINGES C, HABRIOUX A, et al. Cu-ZnO
[7] WANG L B, ZHANG W B, ZHENG X S, et al. Incorporating catalysts for CO 2 hydrogenation to methanol: Morphology change
nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic induced by ZnO lixiviation and its impact on the active phase
activity toward CO 2 hydrogenation[J]. Nature Energy, 2017, 2: formation[J]. Molecular Catalysis, 2018, 446: 98-105.
869-876. [28] TING K W, TOYAO T, SIDDIKI S M A H, et al. Low-temperature
[8] KIM J, SARMA B B, ANDRES E, et al. Surface lewis acidity of hydrogenation of CO 2 to methanol over heterogeneous TiO 2-supported
periphery oxide species as a general kinetic descriptor for CO 2 Re catalysts[J]. ACS Catalysis, 2019, 9(4): 3685-3693.
hydrogenation to methanol on supported copper nanoparticles[J]. [29] LARMIER K, LIAO W C, TADA S, et al. CO 2-to-methanol
ACS Catalysis, 2019, 9(11): 10409-10417. hydrogenation on zirconia-supported copper nanoparticles: Reaction
[9] PENG Y H, WANG L B, LUO Q Q, et al. Molecular-level insight intermediates and the role of the metal-support interface[J].
into how hydroxyl groups boost catalytic activity in CO 2 hydrogenation Angewandte Chemie International Edition, 2017, 56(9): 2318-2323.