Page 155 - 《精细化工》2020年第12期
P. 155

第 12 期                     李静静,等:  改性纳米多孔钴低温催化 CO 2 加氢制甲醇                               ·2517·


                 由图 12 可见,当反应温度低于 200  ℃时,延                        into methanol[J]. Chem, 2018, 4: 613-625.
                                                               [10]  HARTADI Y, WIDMANN D,  BEHM R J. CO 2 hydrogenation to
            长反应时间至 100 min 未检测到产物生成,当反应
                                                                   methanol  on  supported Au catalysts under moderate reaction
                                             –1
            温度高于 200  ℃时,出现在 3015 cm 处的 v(CH 4 )                   conditions: Support and particle size effects[J]. ChemSusChem,
                                       –1
            和 1304、1341、1507、1545 cm 处羧酸盐(*HOCO)                   2015, 8(3): 456-465.
                                                               [11]  LV J K, RONG  Z M, SUN  L M,  et al. Catalytic conversion of
            中(OCO)     [23] 的不对称、对称拉伸吸收峰。*HOCO                     biomass-derived levulinic acid into alcohols over nanoporous Ru
            作为中间产物,表明 CO 2 在催化剂 NP-Co 3.00 Cr 上形                   catalyst[J]. Catalysis Science Technology, 2018, 8(4): 975-979.
                                                               [12]  LU J Q, LIU X, YU G Q,  et al.  Selective hydrodeoxygenation of
            成 CH 3 OH 的过程经历了 RWGS 和 CO 氢化过程。
                                                                   guaiacol to cyclohexanol catalyzed by canoporous nickel[J].
                                                                   Catalysis Letters, 2020, 150: 837-848.
            3    结论                                            [13]  BANSODE A, URAKAWA A. Towards full one-pass conversion of
                                                                   carbon dioxide to methanol and methanol-derived products[J] Journal
                 制备了 NP-Co 及其改性催化剂 NP-Co 3.00 Cr 用                 of Catalysis, 2014, 309: 66-70.
                                                               [14]  WITOON T, NUMPILAI T, PHONGAMWANG T, et al. Enhanced
            于 CO 2 加氢制 CH 3 OH。在低温下,NP-Co 3.00 Cr 的                activity, selectivity and stability of a CuO-ZnO-ZrO 2 catalyst by
            催化活性明显高于 NP-Co,改性催化剂制 CH 3 OH                          adding graphene oxide for CO 2 hydrogenation to methanol[J].
                                                                   Chemical Engineering Journal, 2018, 334: 1781-1791.
            的 E a 大幅降低。低温有利于 CH 3 OH 的生成,在 60 ℃                [15]  JING M J, ZHOU M J, LI G Y, et al. Graphene-embedded Co 3O 4
            下, CH 3 OH 选择性 高达 92.8% ,时间收 率                         rose-spheres  for enhanced performance in lithium ion batteries[J]
            106.4 µmol/(g Cat ·h),而在相同的反应条件下,使用                    ACS Applied Materials Interfaces, 2017, 9(11): 9662-9668.
                                                               [16]  WANG L X, WANG L, ZHANG J, et al. Selective hydrogenation of
                                              0
            NP-Co 未观察到 CH 3 OH 的生成。Co 与 CrO x 的协                   CO 2 to ethanol  over cobalt catalysts[J]. Angewandte Chemie
            同作用有利于 CO 2 与 NP-Co 3.00 Cr 表面羟基的强相互                   International Edition, 2018, 57(21): 6104-6108.
                                                               [17]  HOCH L B, WOOD T E, O'BRINE P G, et al. The rational design of
            作用,降低反应能垒、提高活性。CO 2 通过*HOCO                            a single-component photocatalyst for gas-phase CO 2 reduction using
            中间体转化为 CH 3 OH,经历了 RWGS 和 CO 氢化过                       both UV and visible light[J]. Advanced Science, 2014, 1(1): 1400013.
            程。去合金过程中 Al 元素的过度蚀刻导致催化剂结                          [18]  CONG Y Q, CHEN M M, XU T,  et al.  Tantalum and aluminum
                                                                   co-doped iron oxide as a robust photocatalyst for water oxidation[J].
            构不能稳定保持,改变 Al 相对含量、调节其脱除速                              Applied Catalysis B: Environmental, 2014, 147: 733-740.
            度等增加 NP-Co 稳定性的改进工作在进行之中。                          [19]  CUI X,  GAO P,  LI S G,  et al. Selective production of  aromatics
                                                                   directly from carbon dioxide hydrogenation[J]. ACS Catalysis, 2019,
            参考文献:                                                  9(5): 3866-3876.
                                                               [20]  KATTEL S, YAN B H, CHEN J G, et al. CO 2 hydrogenation on Pt,
            [1]   WANG P F (王鹏飞), ZHA F (查飞), CHANG Y (常玥),  et al.   Pt/SiO 2 and  Pt/TiO 2: Importance of synergy between Pt and oxide
                 Hydrogenation  of carbon dioxide to light  olefins over CuO-   support[J]. Journal of Catalysis, 2016, 343: 115-126.
                 ZnO/(SAPO-34)-kaolin catalyst[J]. Fine Chemicals (精细化工),   [21]  GAIKWAD R,  BANSODE A,  URAKAWA A.  High-pressure
                 2017, 34(6): 662-668.                             advantages in  stoichiometric hydrogenation of carbon  dioxide to
            [2]   YANG A M (杨爱梅), TIAN H F (田海峰), ZHA F (查飞), et al.   methanol[J]. Journal of Catalysis, 2016, 343: 127-132.
                 Preparation of HZSM-5 of different morphologies and its application   [22]  DU X L, JIANG Z, SU D S, et al. Research progress on the indirect
                 in the catalytic synthesis of dimethyl ether from CO 2 hydrogenation[J].   hydrogenation  of carbon dioxide to  methanol[J]. ChemSusChem,
                 Fine Chemicals (精细化工), 2015, 32(4): 416-421.      2016, 9(4): 322-332.
            [3]   DANG S S, YANG H Y, GAO P,  et al. A review of research   [23]  GUO Y L, GUO X W, SONG C S,  et al. Capsule-structured
                 progress  on  heterogeneous catalysts for methanol synthesis from   copper-zinc catalyst for  highly efficient hydrogenation of carbon
                 carbon dioxide hydrogenation[J]. Catalysis Today, 2019, 330(15):   dioxide to methanol[J]. ChemSusChem. 2019, 12(22): 4916-4926.
                 61-75.                                        [24]  CHEN  Y,  CHIO S, THOMPSON L,  et al. Low-temperature CO 2
            [4]   ALVAREZ A, BANSODE A, URAKAWA A, et al. Challenges in   hydrogenation  to liquid products  via a heterogeneous cascade
                 the greener production of formates/formic acid, methanol, and DME   catalytic system[J]. ACS Catalysis, 2015, 5(3): 1717-1725.
                 by heterogeneously  catalyzed CO 2 hydrogenation processes[J].   [25]  GAO P, ZHONG L S, ZHANG L N, et al. Yttrium oxide modified
                 Chemical Reviews, 2017, 117(14): 9804-9838.       Cu/ZnO/Al 2O 3 catalysts  via hydrotalcite-like precursors  for  CO 2
            [5]   NOH G, LAM E, ALFKE J L, et al. Selective hydrogenation of CO 2   hydrogenation to  methanol[J]. Catalysis Science of Technology,
                                                          Ⅳ
                 to CH 3OH on supported Cu nanoparticles promoted by isolated Ti    2015, 5(9): 4365-4377.
                 surface sites on SiO 2[J]. ChemSusChem, 2019, 12(5): 968-972.   [26]  WANG Y H, KATTEL S, GAO W G, et al. Exploring the ternary
            [6]   CHEN  Y,  CHOI  S, TTOMPSON L T. Low temperature CO 2   interactions in Cu-ZnO-ZrO 2 catalysts for efficient CO 2 hydrogenation
                 hydrogenation to alcohols and hydrocarbons  over Mo 2C supported   to methanol[J]. Nature Communication, 2019, 10 : 1166.
                 metal catalysts[J]. Journal of Catalysis, 2016, 343: 147-156.   [27]  TISSERAUD C, COMMINGES C, HABRIOUX  A, et al. Cu-ZnO
            [7]   WANG L B, ZHANG W B,  ZHENG X S,  et al. Incorporating   catalysts for CO 2 hydrogenation to  methanol: Morphology change
                 nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic   induced by ZnO lixiviation and its  impact on the active phase
                 activity toward CO 2 hydrogenation[J]. Nature Energy, 2017, 2:   formation[J]. Molecular Catalysis, 2018, 446: 98-105.
                 869-876.                                      [28]  TING K W, TOYAO T, SIDDIKI S M A H, et al. Low-temperature
            [8]   KIM J, SARMA  B B, ANDRES E,  et al. Surface lewis acidity of   hydrogenation of CO 2 to methanol over heterogeneous TiO 2-supported
                 periphery oxide species  as a general kinetic descriptor for CO 2   Re catalysts[J]. ACS Catalysis, 2019, 9(4): 3685-3693.
                 hydrogenation to  methanol on supported copper nanoparticles[J].   [29]  LARMIER  K, LIAO W C, TADA S,  et al. CO 2-to-methanol
                 ACS Catalysis, 2019, 9(11): 10409-10417.          hydrogenation on zirconia-supported copper nanoparticles: Reaction
            [9]   PENG Y H, WANG L B, LUO Q Q, et al. Molecular-level insight   intermediates and the role of the  metal-support interface[J].
                 into how hydroxyl groups boost catalytic activity in CO 2 hydrogenation   Angewandte Chemie International Edition, 2017, 56(9): 2318-2323.
   150   151   152   153   154   155   156   157   158   159   160