Page 87 - 精细化工2020年第2期
P. 87
第 2 期 郭晓燕,等: 钛酸钡/醋酸纤维素双功能膜的制备及应用 ·289·
3992158[P]. 1976-11-16. Materialia, 2012, 60(13/14): 5022-5030.
[4] Guo Xiaoyan (郭晓燕), Li Yao (李瑶), Zheng Ye (郑晔), et al. [12] Huan Y, Wang X, Fang J, et al. Grain size effects on piezoelectric
Synthesis and characterization of homogeneous titanium dioxide properties and domain structure of BaTiO 3 ceramics prepared by
microspheres[J]. Fine Chemicals (精细化工), 2017, 34(12): 1404-1411. two-step sintering[J]. Journal of the American Ceramic Society,
[5] Huang Li (黄力), Du Tengfei (杜腾飞), Zhu Biyan (朱碧燕), et al. 2013, 96(11): 3369-3371.
Novel quality control method applied to immunochromatography test [13] Li Xiaofeng (李晓峰), Peng Yiping (彭毅萍), Zhao Huansui (赵焕
paper strip: CN106353503 A[P]. 2016-01-25. 绥), et al. Composite pyroelectric films of BaTiO 3 and PVDF[J].
[6] Tong Liu (童鎏), Ren Xintong (任欣桐), Su Enben (苏恩本). Dry Journal of Shandong University (Natural Science) (山东大学学报:
chemical bigeminal reagent strip for simultaneously detecting 自然科学版), 1996, 31(2): 181-184.
glutamic oxalacetic transaminase and glutamic-pyruvic transaminase: [14] Huang Yongan (黄咏安). Preparation and modification of barium
CN106282312 A[P].2017-01-04. titanate nano powder and the properties of ceramic and thick film[D].
[7] Mahmoud A, Erba A, Elkelany K E, et al. Low-temperature phase of Guangzhou: Guangdong University of Technology (广东工业大学),
BaTiO 3: piezoelectric, dielectric, elastic, and photoelastic properties 2017.
from ab initio simulations[J]. Physical Review B, 2014, 89(4): 45103. [15] Testino A, Buscaglia M T, Viviani M, et al. Synthesis of BaTiO 3
[8] Avila H A, Ramajo L A, Reboredo M M, et al. Hydrothermal particles with tailored size by precipitation from aqueous solutions[J].
synthesis of BaTiO 3 from different Ti-precursors and microstructural Journal of Ceramic Society, 2004, 87(1): 79-83.
and electrical properties of sintered samples with submicrometric [16] Li Yao (李瑶). Synthesis and application in medical diagnostic
grain size[J]. Ceramics International, 2011, 37(7): 2383-2390. reagents of homogeneous titania microspheres[D]. Beijing: Beijing
[9] Feteira A, Sarma K, Alford N M, et al. Microwave dielectric University of Chemical Technology (北京化工大学), 2017.
properties of gallium-doped hexagonal barium titanate ceramics[J]. [17] Liu Yuejiao (刘月姣). The controllable preparation of uniform
Journal of American Ceramic Society, 2003, 86(3): 511-513. BaSO 4 spheres and its application in HDL dry diagnosis[D]. Beijing:
[10] Halder N, Chattopadhyay D, Sharma A D, et al. Effect of sintering Beijing University of Chemical Technology (北京化工大学), 2018.
atmosphere on the dielectric properties of barium titanate based [18] Simonot L, Hébert M, Hersch R D. Extension of the Williams–
capacitors[J]. Materials Research Bulletin, 2001, 36(5/6): 905-913. Clapper model to stacked nondiffusing colored coatings with different
[11] Zheng P, Zhang J L, Tan Y Q, et al. Grain-size effects on dielectric refractive indices[J]. Journal of the Optical Society of America A-optics
and piezoelectric properties of poled BaTiO 3 ceramics[J]. Acta Image Science and Vision, 2006, 23(6): 1432-1441.
(上接第 263 页) CoFe 2O 4/graphene nanocomposite as a high-performance lithium-ion
battery anode[J]. Electrochimica Acta, 2016, 215: 247-252.
[23] Wang G, Wang B, Wang X, et al. Sn/graphene nanocomposite with [31] Liu Hongcheng (刘洪成), Wang Jue (王珏), Wang Qi (王琦), et al.
3D architecture for enhanced reversible lithium storage in lithium ion Study on electrical properties of SnO 2/graphene complex with natural
batteries[J]. Journal of Materials Chemistry, 2009, 19(44): 8378-8384. flake graphite as anode material in lithium ion battery[J]. Journal of
[24] Shan C, Yen H, Wu K, et al. Functionalized fullerenes for highly Science of Teachersʹ College and University (高师理科学刊), 2017,
efficient lithium ion storage: Structure-property-performance correlation 37(8): 56-59.
with energy implications[J]. Nano Energy, 2017, 40: 327-335. [32] Wu F, Xie A, Sun M, et al. Reduced graphene oxide (RGO) modified
[25] Deng Y, Fang C, Chen G. The developments of SnO 2/graphene sponge-like polypyrrole (PPy) aerogel for excellent electromagnetic
nanocomposites as anode materials for high performance lithium ion absorption[J]. Journal of Materials Chemistry A, 2015, 3(27): 14358-
batteries: A review[J]. Journal of Power Sources, 2016, 304: 81-101. 14369.
[26] Cheng Hu (程琥), Liang Meifang (梁妹芳). Synthesis and electro- [33] Huang W, Hao Q, Wu L, et al. Polypyrrole-hemin-reduce graphene
chemical performance of SnO 2 nanospheres[J]. Fine Chemicals (精 oxide: Rapid synthesis and enhanced electrocatalytic activity towards
细化工), 2017, 34(1): 16-19. the reduction of hydrogen peroxide[J]. Materials Research Express,
[27] Zhang Y, Wei Y, Li H, et al. Simple fabrication of free-standing 2014, 1(4): 045601.
ZnO/graphene/carbon nanotube composite anode for lithium-ion [34] Qi Y, Cao Y, Meng X, et al. Microwave-assisted synthesis of a
batteries[J]. Materials Letters, 2016, 184: 235-238. polypyrrole/graphene composite using a pyrrole-induced graphene
[28] Meng R, Hou H, Liu X, et al. Binder-free combination of graphene oxide hydrogel for the selective determination of dihydroxybenzenes
nanosheets with TiO 2 nanotube arrays for lithium ion battery [J]. Chemistry Select, 2018, 3(27): 7713-7717.
anode[J]. Journal of Porous Materials, 2016, 23(3): 569-575. [35] Jian X, Li J, Yang H, et al. Carbon quantum dots reinforced
[29] He D, Li L, Bai F, et al. One-pot synthesis of pomegranate-structured polypyrrole nanowire via electrostatic self-assembly strategy for
Fe 3O 4/carbon nanospheres-doped graphene aerogel for high-rate high-performance supercapacitors[J]. Carbon, 2017, 114: 533-543.
lithium ion batteries[J]. Chemistry-A European Journal, 2016, [36] Gan J K, Lim Y S, Pandikumar A, et al. Graphene/polypyrrole-
22(13): 4454-4459. coated carbon nanofiber core-shell architecture electrode for
[30] Zhu Y, Lv X, Zhang L, et al. Liquid-solid-solution assembly of electrochemical capacitors[J]. RSC Advances, 2015, 5: 12692-12699.