Page 88 - 《精细化工》2020年第3期
P. 88

·506·                             精细化工   FINE CHEMICALS                                  第 37 卷

                 crystallographic  structures:   Fd3̄m  and  P4 332[J].  Chemistry  of   (材料热处理学报), 2012, 33(4): 12-16.
                 Materials, 2004, 16(5): 906-914.              [15]  SUN  P,  MA  Y,  ZHAI  T,  et al.  High  performance  LiNi 0.5Mn 1.5O 4
                                                                                      3+
            [3]   XU  X  L,  DENG  S  X,  WANG  H,  et al.  Research  progress  in   cathode  by  Al-coating  and  Al -doping  through  a  physical  vapor
                 improving  the  cycling  stability  of  high  voltage  LiNi 0.5Mn 1.5O 4   deposition method[J]. Electrochimica Acta, 2016, 191: 237-246.
                 cathode in lithium-ion battery [J]. Nano-Micro Letters, 2017, 9: 22.   [16]  ZHANG  X,  CHENG  F,  ZHANG  K,  et al.  Facile  polymer-assisted
            [4]   LIN  Y, YANG Y,  YU R,  et al.  Enhanced  electrochemical   synthesis of LiNi 0.5Mn 1.5O 4 with a hierarchical micro-nano structure
                 performances  of  LiNi 0.5Mn 1.5O 4  by  surface  modification  with   and high rate capability [J]. RSC Advances, 2012, 2(13): 5669-5675.
                 superconducting  YBa 2Cu 3O 7[J].  Journal  of  Power  Sources,  2014,   [17]  CHANG  Q,  WEI  A,  LI  W,  et al.  Structural  and  electrochemical
                 259: 188-194.                                     characteristics  of  Al 2O 3-modified  LiNi 0.5Mn 1.5O 4  cathode  materials
            [5]   ARUNKUMAR  T  A,  MANTHIRAM  A.  Influence  of  lattice   for  lithium-ion  batteries[J].  Ceramics  International,  2019,  45(4):
                 parameter differences on the electrochemical performance of the 5 V   5100-5110.
                 spinel  LiMn 1.5 − yNi 0.5 − zM y + zO 4  (M = Li,  Mg,  Fe,  Co  and  Zn)[J].   [18]  ARREBOLA  J,  CABALLERO  A,  HERNAN  L,  et al.  Effects  of
                 Electrochemical and Solid State Letters, 2005, 8(8): A403-A405.   coating  with  gold  on  the  performance  of  nanosized  LiNi 0.5Mn 1.5O 4
            [6]   DENG Haifu(邓海福), NIE Ping(聂平), SHEN Laifa(申来法), et al.   for  lithium  batteries  [J].  Journal  of  Electrochemical  Society,  2007,
                 High  voltage  spinel-structured  LiNi 0.5Mn 1.5O 4  as  cathode  materials   154(3): A178-A184.
                 for  Li-ion  batteries[J].  Progress  in  Chemistry  (化学进展),  2014,   [19]  Chen  Y,  Sun  Y,  Huang  X,  et al.  Origin  of  the  Ni/Mn  ordering  in
                 26(6): 939-949.                                   high-voltage  spinel  LiNi 0.5Mn 1.5O 4:  The  role  of  oxygen  vacancies
            [7]   DENG Y, MOU J, HE L, et al. A core-shell structured LiNi 0.5Mn 1.5O 4   and  cation  doping[J].  Computational  Materials  Science,  2016,  115:
                 @LiCoO 2 cathode material with superior rate capability and cycling   109-116.
                 performance[J]. Dalton Transactions, 2018, 47(2): 367-375.   [20]  SONG J, SHIN D W, LU Y H, et al. Role of oxygen vacancies on the
            [8]   SUN H Y, KONG X, WANG B S, et al. Cu doped LiNi 0.5Mn 1.5−xCu xO 4   performance  of  Li[Ni 0.5–xMn 1.5+x]O 4 (x=0,  0.05,  and  0.08)  spinel
                 (x= 0, 0.03, 0.05, 0.10, 0.15) with significant improved electrochemical   cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2012,
                 performance  prepared  by  a  modified  low  temperature  solution   24(15): 3101-3109.
                 combustion synthesis method[J]. Ceramics International, 2018, 44(5):   [21]  YANG J, HAN X, ZHANG X, et al. Spinel LiNi 0.5Mn 1.5O 4 cathode
                 4603-4610.                                        for rechargeable lithiumion batteries: Nano vs micro, ordered phase
            [9]   WANG S, LI P, SHAO L, et al. Preparation of spinel LiNi 0.5Mn 1.5O 4   (P4 332) vs disordered phase (Fd3-m)[J]. Nano Research, 2013, 6(9):
                 and  Cr-doped  LiNi 0.5Mn 1.5O 4  cathode  materials  by  tartaric  acid   679-687.
                 assisted  sol-gel  method[J].  Ceramics  International,  2015,  41(1):   [22]  ARREBOLA  J  C,  CABALLERO  A,  HERNAN  L,  et al.
                 1347-1353.                                        Polymer-mediated growth of highly crystalline nano- and micro-sized
                                                  +
            [10]  WANG  J,  CHEN  D,  WU  W,  et al.  Effects  of  Na   doping  on   LiNi 0.5Mn 1.5O 4 spinels[J].  European  Journal of  Inorganic  Chemistry,
                 crystalline  structure  and  electrochemical  performances  of   2008, 21: 3295-3302.
                 LiNi 0.5Mn 1.5O 4  cathode  material[J].  Transactions  of  Nonferrous   [23]  LIN  H,  ZHANG  Y,  RONG  H,  et al.  Crystallographic  facet-  and
                 Metals Society of China, 2017, 27(10): 2239-2248.   size-controllable  synthesis  of  spinel  LiNi 0.5Mn 1.5O 4  with  excellent
            [11]  LIU G, ZHANG J, ZHANG X, et al. Study on oxygen deficiency in   cyclic  stability  as  cathode  of  high  voltage  lithium  ion  battery[J].
                 spinel LiNi 0.5Mn 1.5O 4 and its Fe and Cr-doped compounds[J]. Journal   Journal of Materials Chemistry A, 2014, 2(30): 11987-11995.
                 of Alloys and Compounds, 2017, 725: 580-586.   [24]  GU Y, LI Y, CHEN Y, et al. Comparison of Li/Ni antisite defects in
            [12]  WANG H, TAN T A, YANG P, et al. High-rate performances of the   Fd-3 m and P4 332 nanostructured LiNi 0.5Mn 1.5O 4 electrode for Li-ion
                 Ru-  doped  spinel  LiNi 0.5Mn 1.5O 4:  Effects  of  doping  and  particle   batteries[J]. Electrochimica Acta, 2016, 213: 368-374.
                 size[J]. Journal of Physical Chemistry C, 2011, 115(13): 6102-6110.   [25]  HARIDAS  A  K,  SHARMA  C  S,  RAO  T  N,  et al.  Caterpillar-like
            [13]  LUO  Y,  LU  T,  ZHANG  Y,  et al.  Surface-segregated,  high-voltage   sub-micron  LiNi 0.5Mn 1.5O 4  structures  with  site  disorder  and  excess
                                                                     3+
                 spinel lithium-ion battery cathode material LiNi 0.5Mn 1.5O 4 cathodes   Mn   as  high  performance  cathode  material  for  lithium  ion
                 by aluminium doping with improved high-rate cyclability[J]. Journal   batteries[J]. Electrochimica Acta, 2016, 212: 500-509.
                 of Alloys and Compounds, 2017, 703: 289-297.   [26]  KUNDURACI  M,  AL-SHARAB  J,  AMATUCCI  G.  High-Power
            [14]  WU  Ningning(吴宁宁),  SONG  Wene(宋文娥),  AN  Fuqiang(安富  nanostructured LiMn 2–xNi xO 4 high-voltage lithium-ion battery electrode
                 强),    et al.  Effect  of  Al  doping  on  performance  of  LiNi 0.5Mn 1.5O 4   materials:  Electrochemical  impact  of  electronic  conductivity  and
                 high volt materials[J]. Transactions of Materials and Heat Treatment   morphology [J]. Chemistry of Materials, 2006, 18(15): 3585-3592.
   83   84   85   86   87   88   89   90   91   92   93