Page 88 - 《精细化工》2020年第3期
P. 88
·506· 精细化工 FINE CHEMICALS 第 37 卷
crystallographic structures: Fd3̄m and P4 332[J]. Chemistry of (材料热处理学报), 2012, 33(4): 12-16.
Materials, 2004, 16(5): 906-914. [15] SUN P, MA Y, ZHAI T, et al. High performance LiNi 0.5Mn 1.5O 4
3+
[3] XU X L, DENG S X, WANG H, et al. Research progress in cathode by Al-coating and Al -doping through a physical vapor
improving the cycling stability of high voltage LiNi 0.5Mn 1.5O 4 deposition method[J]. Electrochimica Acta, 2016, 191: 237-246.
cathode in lithium-ion battery [J]. Nano-Micro Letters, 2017, 9: 22. [16] ZHANG X, CHENG F, ZHANG K, et al. Facile polymer-assisted
[4] LIN Y, YANG Y, YU R, et al. Enhanced electrochemical synthesis of LiNi 0.5Mn 1.5O 4 with a hierarchical micro-nano structure
performances of LiNi 0.5Mn 1.5O 4 by surface modification with and high rate capability [J]. RSC Advances, 2012, 2(13): 5669-5675.
superconducting YBa 2Cu 3O 7[J]. Journal of Power Sources, 2014, [17] CHANG Q, WEI A, LI W, et al. Structural and electrochemical
259: 188-194. characteristics of Al 2O 3-modified LiNi 0.5Mn 1.5O 4 cathode materials
[5] ARUNKUMAR T A, MANTHIRAM A. Influence of lattice for lithium-ion batteries[J]. Ceramics International, 2019, 45(4):
parameter differences on the electrochemical performance of the 5 V 5100-5110.
spinel LiMn 1.5 − yNi 0.5 − zM y + zO 4 (M = Li, Mg, Fe, Co and Zn)[J]. [18] ARREBOLA J, CABALLERO A, HERNAN L, et al. Effects of
Electrochemical and Solid State Letters, 2005, 8(8): A403-A405. coating with gold on the performance of nanosized LiNi 0.5Mn 1.5O 4
[6] DENG Haifu(邓海福), NIE Ping(聂平), SHEN Laifa(申来法), et al. for lithium batteries [J]. Journal of Electrochemical Society, 2007,
High voltage spinel-structured LiNi 0.5Mn 1.5O 4 as cathode materials 154(3): A178-A184.
for Li-ion batteries[J]. Progress in Chemistry (化学进展), 2014, [19] Chen Y, Sun Y, Huang X, et al. Origin of the Ni/Mn ordering in
26(6): 939-949. high-voltage spinel LiNi 0.5Mn 1.5O 4: The role of oxygen vacancies
[7] DENG Y, MOU J, HE L, et al. A core-shell structured LiNi 0.5Mn 1.5O 4 and cation doping[J]. Computational Materials Science, 2016, 115:
@LiCoO 2 cathode material with superior rate capability and cycling 109-116.
performance[J]. Dalton Transactions, 2018, 47(2): 367-375. [20] SONG J, SHIN D W, LU Y H, et al. Role of oxygen vacancies on the
[8] SUN H Y, KONG X, WANG B S, et al. Cu doped LiNi 0.5Mn 1.5−xCu xO 4 performance of Li[Ni 0.5–xMn 1.5+x]O 4 (x=0, 0.05, and 0.08) spinel
(x= 0, 0.03, 0.05, 0.10, 0.15) with significant improved electrochemical cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2012,
performance prepared by a modified low temperature solution 24(15): 3101-3109.
combustion synthesis method[J]. Ceramics International, 2018, 44(5): [21] YANG J, HAN X, ZHANG X, et al. Spinel LiNi 0.5Mn 1.5O 4 cathode
4603-4610. for rechargeable lithiumion batteries: Nano vs micro, ordered phase
[9] WANG S, LI P, SHAO L, et al. Preparation of spinel LiNi 0.5Mn 1.5O 4 (P4 332) vs disordered phase (Fd3-m)[J]. Nano Research, 2013, 6(9):
and Cr-doped LiNi 0.5Mn 1.5O 4 cathode materials by tartaric acid 679-687.
assisted sol-gel method[J]. Ceramics International, 2015, 41(1): [22] ARREBOLA J C, CABALLERO A, HERNAN L, et al.
1347-1353. Polymer-mediated growth of highly crystalline nano- and micro-sized
+
[10] WANG J, CHEN D, WU W, et al. Effects of Na doping on LiNi 0.5Mn 1.5O 4 spinels[J]. European Journal of Inorganic Chemistry,
crystalline structure and electrochemical performances of 2008, 21: 3295-3302.
LiNi 0.5Mn 1.5O 4 cathode material[J]. Transactions of Nonferrous [23] LIN H, ZHANG Y, RONG H, et al. Crystallographic facet- and
Metals Society of China, 2017, 27(10): 2239-2248. size-controllable synthesis of spinel LiNi 0.5Mn 1.5O 4 with excellent
[11] LIU G, ZHANG J, ZHANG X, et al. Study on oxygen deficiency in cyclic stability as cathode of high voltage lithium ion battery[J].
spinel LiNi 0.5Mn 1.5O 4 and its Fe and Cr-doped compounds[J]. Journal Journal of Materials Chemistry A, 2014, 2(30): 11987-11995.
of Alloys and Compounds, 2017, 725: 580-586. [24] GU Y, LI Y, CHEN Y, et al. Comparison of Li/Ni antisite defects in
[12] WANG H, TAN T A, YANG P, et al. High-rate performances of the Fd-3 m and P4 332 nanostructured LiNi 0.5Mn 1.5O 4 electrode for Li-ion
Ru- doped spinel LiNi 0.5Mn 1.5O 4: Effects of doping and particle batteries[J]. Electrochimica Acta, 2016, 213: 368-374.
size[J]. Journal of Physical Chemistry C, 2011, 115(13): 6102-6110. [25] HARIDAS A K, SHARMA C S, RAO T N, et al. Caterpillar-like
[13] LUO Y, LU T, ZHANG Y, et al. Surface-segregated, high-voltage sub-micron LiNi 0.5Mn 1.5O 4 structures with site disorder and excess
3+
spinel lithium-ion battery cathode material LiNi 0.5Mn 1.5O 4 cathodes Mn as high performance cathode material for lithium ion
by aluminium doping with improved high-rate cyclability[J]. Journal batteries[J]. Electrochimica Acta, 2016, 212: 500-509.
of Alloys and Compounds, 2017, 703: 289-297. [26] KUNDURACI M, AL-SHARAB J, AMATUCCI G. High-Power
[14] WU Ningning(吴宁宁), SONG Wene(宋文娥), AN Fuqiang(安富 nanostructured LiMn 2–xNi xO 4 high-voltage lithium-ion battery electrode
强), et al. Effect of Al doping on performance of LiNi 0.5Mn 1.5O 4 materials: Electrochemical impact of electronic conductivity and
high volt materials[J]. Transactions of Materials and Heat Treatment morphology [J]. Chemistry of Materials, 2006, 18(15): 3585-3592.