Page 125 - 《精细化工》2020年第5期
P. 125

第 5 期                   邢   宇,等:  合成气直接制低碳烯烃用 Fe/K/Mg-O-Al 催化剂                           ·975·


            3   结论                                                 hydrogenation[J]. Fine Chemicals (精细化工), 2018, 35(4): 631-637.
                                                               [12]  XING  Y  (邢宇), LIU Z X (刘振新), XUE Y  Y (薛莹莹),  et al.
                                                                   Effects  of  support  type  to  the  CO  hydrogenation  performance  and
                 本文探索了采用钝化型 Mg—O—Al 复合氧化                           activation  energy  of  cobalt-based  catalytic  materials[J].  Journal  of
            物载体来构筑强固体碱型催化剂,用于合成气直接                                 Functional Materials (功能材料), 2016, 47(5): 73-77.
                                                               [13]  LAAN G P V D, BEENACKERS A C M. Kinetics and selectivity of
            转化制取低碳烯烃,活性组分均为铁,助剂均为钾。                                the  Fischer-Tropsch  synthesis:  A  literature  review[J].  Catal  Rev,
            不同的 Al/Mg 原子比会引起催化剂活性的差异,但                             2011, 41(3-4): 255-318.
                                                               [14]  JONGSOMJIT B, PANPRANOT J, JR J G G. Co-support compound
            是催化剂活性与催化剂中 Al/Mg 原子比之间没有简                             formation  in  alumina-supported  cobalt  catalysts[J].  J  Catal,  2001,
                                                                   204(1): 98-109.
            单的正方向或反方向关系。Al 元素可能有增大 CO 2
                                                               [15]  GALVIS H M T, DE JONG K P. Catalysts for production of lower
            选择性的潜在作用,而 Mg 元素则可能有减小 CO 2                            olefins  from  synthesis  gas:  A  review[J].  ACS  Catal,  2013,  3(9):
            选择性的潜在作用。Al/Mg 原子比对于催化剂的表                              2130-2149.
                                                               [16]  JIAO F, LI J J, PAN X L, et al. Selective conversion of syngas to
            面碱度分布具有显著影响。CO 2 -TPD 高温峰面积越                           light olefins[J]. Science, 2016, 351(6277): 1065-1068.
            大,即催化剂表面强碱位的数量越多,则抑制加氢                             [17]  CHENG  K,  GU  B,  LIU  X  L,  et al.  Direct  and  highly  selective
                                                                   conversion of synthesis gas into lower olefins: Design of a bifunctional
            的能力越显著,使得 C 2 ~C 4 烯烷比越高。表面强碱                          catalyst combining methanol synthesis and carbon-carbon coupling[J].
            位是抑制 C—C 偶合的主导因素,其他碱性位(如                               Angew Chem Int Ed, 2016, 55(15): 4725-4728.
                                                               [18]  YU Y Y, XU Y M, CHENG D G, et al. Transformation of syngas to
            次强碱位、弱碱位)也能够对抑制 C—C 偶合起到
                                                                   light  hydrocarbons  over  bifunctional  CuO-ZnO/SAPO-34  catalysts:
            次要作用。在相同钝化处理条件下,与简单氧化物                                 The effect of preparation methods[J]. React Kinet Mech Catal, 2014,
                                                                   112(2): 489-497.
            MgO 担载的弱碱性催化剂(M0)相比,复合氧化
                                                               [19]  ZHONG L S, YU F, AN Y L, et al. Cobalt carbide nanoprisms for
                                                                   direct  production  of  lower  olefins  from  syngas[J].  Nature,  2016,
            物 MgAl 2 O 4 担载的强碱性催化剂(M2)将 C 2 ~C 4
                                        =
                                           =
            烯烷比显著提高了 266%,将 C 2 ~C 4 烃产物分布值显                       538(7623): 84-87.
                                                               [20]  GALVIS H M T, BITTER J H, KHARE C B, et al. Supported iron
            著提高了 84%。                                              nanoparticles as catalysts for sustainable production of lower olefins
                                                                   [J]. Science, 2012, 335(6070): 835-838.
            参考文献:                                              [21]  GALVIS  H  M  T,  KOEKEN  A  C  J,  BITTER  J  H,  et al.  Effects  of
                                                                   sodium and sulfur on catalytic performance of supported iron catalysts
            [1]   BAE  J  S,  HONG  S  Y,  PARK  J  C,  et al.  Eco-friendly  prepared   for the Fischer-Tropsch synthesis of lower olefins[J]. J Catal, 2013,
                 iron-ore-based catalysts for Fischer-Tropsch synthesis[J]. Appl Catal   303: 22-30.
                 B-Environ, 2019, 244: 576-582.                [22]  XING  Y,  ZHAO  C  X,  JIA  G  P,  et al.  Coprecipitated  Fe/K/spinel
            [2]   SALAZAR-CONTRERAS  H  G,  MARTINEZ-HERNANDEZ  A,   nanocomposites for Fischer-Tropsch to lower olefins[J]. J Nanopart
                 BOIX  A  A,  et al.  Effect  of  Mn  on  Co/HMS-Mn  and  Co/SiO 2-Mn   Res, 2018, 20(7): 1-10.
                 catalysts for the Fischer-Tropsch reaction[J]. Appl Catal B-Environ,   [23]  XING Y, JIA G P, LIU Z X, et al. Development of highly selective
                 2019, 244: 414-426.                               support  for  CO  hydrogenation  to  light  olefins  with  partially
            [3]   LUO Q X, GUO L P, YAO S Y, et al. Cobalt nanoparticles confined   passivated iron catalysts[J]. ChemCatChem, 2019, 11(14): 3187-3199.
                 in carbon matrix for probing the size dependence in Fischer-Tropsch   [24]  FORGIONNY A, FIERRO J L G, MONDRAGON F, et al. Effect of
                 synthesis[J]. J Catal, 2019, 369: 143-156.        Mg/Al  ratio  on  catalytic  behavior  of  Fischer-Tropsch  cobalt-based
            [4]   CHO  J  M,  KASIPANDI  S,  PARK  Y  M,  et al.  Spatially  confined   catalysts obtained from hydrotalcites precursors[J]. Top Catal, 2016,
                 cobalt nanoparticles on zirconium phosphate-modified KIT-6 for an   59(2-4): 230-240.
                 enhanced  stability  of  CO  hydrogenation  to  hydrocarbons[J].  Fuel,   [25]  ZHANG  J  (张俊),  ZHANG  Z  P  (张征湃),  SU  J  J  (苏俊杰),  et al.
                 2019, 239: 547-558.                               Effect of support basicity on iron-based catalysts for Fischer-Tropsch
            [5]   GUPTA  M,  SMITH  M  L,  SPIVEY  J  J.  Heterogeneous  catalytic   synthesis[J]. CIESC Journal (化工学报), 2016, 67(2): 549-556.
                 conversion of dry syngas to ethanol and higher alcohols on cu-based   [26]  IYI  N,  TAKEKAWA  S,  KIMURA  S.  Crystal  chemistry  of
                 catalysts[J]. ACS Catal, 2011, 1(6): 641-656.     hexaaluminates:  β-alumina  and  magnetoplumbite  structures[J].  J
            [6]   ELBASHIR  N  O,  DUTTA  P,  MANIVANNAN  A.  Impact  of   Solid State Chem, 1989, 83(1): 8-19.
                 cobalt-based catalyst characteristics on the performance of conventional   [27]  KANG  H  K,  PARK  H  C,  KIM  K  H.  Preparation  of  beta-alumina
                 gas-phase and supercritical-phase Fischer-Tropsch synthesis[J]. Appl   powder from kaolin-derived aluminium sulphate solution[J]. J Mater
                 Catal A-Gen, 2005, 285(1): 169-180.               Sci-Mater El, 1996, 7(6): 385-389.
            [7]   LIU Z X, YU X,  XUE  Y Y,  et al. Synthesis, characterization, and   [28]  NIEMANTSVERDRIET J W, VAN DER KRAAN A M, VAN DIJK
                 Fischer–Tropsch performance of cobalt/zinc aluminate nanocomposites   W  L,  et al.  Behavior  of  metallic  iron  catalysts  during
                 via  a  facile  and  corrosion-free  coprecipitation  route[J].  J  Nanopart   Fischer-Tropsch  synthesis  studied  with  Moessbauer  spectroscopy,
                 Res, 2015, 17(2): 1-11.                           X-ray diffraction, carbon content determination, and reaction kinetic
            [8]   XING  Y,  LIU  Z  X,  XUE  Y  Y,  et al.  Variation  trends  of  CO   measurements[J]. J Phys Chem, 1980, 84: 3363-3370.
                 hydrogenation  performance  of  (Al)-O-(Zn)  supported  cobalt   [29]  SING  K  S  W, EVERETT D H,  HAUL  R A W,  et al.  Reporting
                 nanocomposites: Effects of gradual doping with Zn-O Lewis base[J].   physisorption data for gas/solid systems with special reference to the
                 Catal Lett, 2016, 146: 682-691.                   determination of surface area and porosity (Recommendations 1984)
            [9]   LIU Z Y, WU D P, XING Y, et al. Effect of in-situ sulfur poisoning   [J]. Pure & Appl Chem, 1985, 57: 603-619.
                 on  zinc-containing  spinel-supported  cobalt  CO  hydrogenation   [30]  MAITLIS P M, ZANOTTI V. The role of electrophilic species in the
                 catalyst [J]. Appl Catal A-Gen, 2016, 514: 164-172.   Fischer-Tropsch reaction[J]. Chem Commun, 2009, 1619-1634.
            [10]  PENDYALA V  R  R, GRAHAM U M, JACOBS G, et al. Fischer–   [31]  MAITLIS  P  M,  ZANOTTI  V.  Organometallic  Models  for  Metal
                 Tropsch synthesis: Morphology, phase transformation, and carbon-layer     Surface Reactions: Chain growth involving electrophilic methylidynes
                 growth of iron-based catalysts[J]. ChemCatChem, 2014, 6(7): 1952-   in the Fischer-Tropsch reaction[J]. Catal Lett, 2008, 122: 80-83.
                 1960.                                         [32]  DRY M  E,  SHINGLES T,  BOSHOFF  L  J,  et al.  Heats  of
            [11]  DUAN  J  G  (段建国),  WANG  Y  X  (王亚雄), LIU Q S (刘全生).   chemisorption  on  promoted  iron  surfaces  and  the  role  of  alkali  in
                 Effects  of  K/Zr  promoter  on  iron-based  catalyst  for  CO   Fischer-Tropsch synthesis[J]. J Catal, 1969, 15: 190-199.
   120   121   122   123   124   125   126   127   128   129   130