Page 125 - 《精细化工》2020年第5期
P. 125
第 5 期 邢 宇,等: 合成气直接制低碳烯烃用 Fe/K/Mg-O-Al 催化剂 ·975·
3 结论 hydrogenation[J]. Fine Chemicals (精细化工), 2018, 35(4): 631-637.
[12] XING Y (邢宇), LIU Z X (刘振新), XUE Y Y (薛莹莹), et al.
Effects of support type to the CO hydrogenation performance and
本文探索了采用钝化型 Mg—O—Al 复合氧化 activation energy of cobalt-based catalytic materials[J]. Journal of
物载体来构筑强固体碱型催化剂,用于合成气直接 Functional Materials (功能材料), 2016, 47(5): 73-77.
[13] LAAN G P V D, BEENACKERS A C M. Kinetics and selectivity of
转化制取低碳烯烃,活性组分均为铁,助剂均为钾。 the Fischer-Tropsch synthesis: A literature review[J]. Catal Rev,
不同的 Al/Mg 原子比会引起催化剂活性的差异,但 2011, 41(3-4): 255-318.
[14] JONGSOMJIT B, PANPRANOT J, JR J G G. Co-support compound
是催化剂活性与催化剂中 Al/Mg 原子比之间没有简 formation in alumina-supported cobalt catalysts[J]. J Catal, 2001,
204(1): 98-109.
单的正方向或反方向关系。Al 元素可能有增大 CO 2
[15] GALVIS H M T, DE JONG K P. Catalysts for production of lower
选择性的潜在作用,而 Mg 元素则可能有减小 CO 2 olefins from synthesis gas: A review[J]. ACS Catal, 2013, 3(9):
选择性的潜在作用。Al/Mg 原子比对于催化剂的表 2130-2149.
[16] JIAO F, LI J J, PAN X L, et al. Selective conversion of syngas to
面碱度分布具有显著影响。CO 2 -TPD 高温峰面积越 light olefins[J]. Science, 2016, 351(6277): 1065-1068.
大,即催化剂表面强碱位的数量越多,则抑制加氢 [17] CHENG K, GU B, LIU X L, et al. Direct and highly selective
conversion of synthesis gas into lower olefins: Design of a bifunctional
的能力越显著,使得 C 2 ~C 4 烯烷比越高。表面强碱 catalyst combining methanol synthesis and carbon-carbon coupling[J].
位是抑制 C—C 偶合的主导因素,其他碱性位(如 Angew Chem Int Ed, 2016, 55(15): 4725-4728.
[18] YU Y Y, XU Y M, CHENG D G, et al. Transformation of syngas to
次强碱位、弱碱位)也能够对抑制 C—C 偶合起到
light hydrocarbons over bifunctional CuO-ZnO/SAPO-34 catalysts:
次要作用。在相同钝化处理条件下,与简单氧化物 The effect of preparation methods[J]. React Kinet Mech Catal, 2014,
112(2): 489-497.
MgO 担载的弱碱性催化剂(M0)相比,复合氧化
[19] ZHONG L S, YU F, AN Y L, et al. Cobalt carbide nanoprisms for
direct production of lower olefins from syngas[J]. Nature, 2016,
物 MgAl 2 O 4 担载的强碱性催化剂(M2)将 C 2 ~C 4
=
=
烯烷比显著提高了 266%,将 C 2 ~C 4 烃产物分布值显 538(7623): 84-87.
[20] GALVIS H M T, BITTER J H, KHARE C B, et al. Supported iron
著提高了 84%。 nanoparticles as catalysts for sustainable production of lower olefins
[J]. Science, 2012, 335(6070): 835-838.
参考文献: [21] GALVIS H M T, KOEKEN A C J, BITTER J H, et al. Effects of
sodium and sulfur on catalytic performance of supported iron catalysts
[1] BAE J S, HONG S Y, PARK J C, et al. Eco-friendly prepared for the Fischer-Tropsch synthesis of lower olefins[J]. J Catal, 2013,
iron-ore-based catalysts for Fischer-Tropsch synthesis[J]. Appl Catal 303: 22-30.
B-Environ, 2019, 244: 576-582. [22] XING Y, ZHAO C X, JIA G P, et al. Coprecipitated Fe/K/spinel
[2] SALAZAR-CONTRERAS H G, MARTINEZ-HERNANDEZ A, nanocomposites for Fischer-Tropsch to lower olefins[J]. J Nanopart
BOIX A A, et al. Effect of Mn on Co/HMS-Mn and Co/SiO 2-Mn Res, 2018, 20(7): 1-10.
catalysts for the Fischer-Tropsch reaction[J]. Appl Catal B-Environ, [23] XING Y, JIA G P, LIU Z X, et al. Development of highly selective
2019, 244: 414-426. support for CO hydrogenation to light olefins with partially
[3] LUO Q X, GUO L P, YAO S Y, et al. Cobalt nanoparticles confined passivated iron catalysts[J]. ChemCatChem, 2019, 11(14): 3187-3199.
in carbon matrix for probing the size dependence in Fischer-Tropsch [24] FORGIONNY A, FIERRO J L G, MONDRAGON F, et al. Effect of
synthesis[J]. J Catal, 2019, 369: 143-156. Mg/Al ratio on catalytic behavior of Fischer-Tropsch cobalt-based
[4] CHO J M, KASIPANDI S, PARK Y M, et al. Spatially confined catalysts obtained from hydrotalcites precursors[J]. Top Catal, 2016,
cobalt nanoparticles on zirconium phosphate-modified KIT-6 for an 59(2-4): 230-240.
enhanced stability of CO hydrogenation to hydrocarbons[J]. Fuel, [25] ZHANG J (张俊), ZHANG Z P (张征湃), SU J J (苏俊杰), et al.
2019, 239: 547-558. Effect of support basicity on iron-based catalysts for Fischer-Tropsch
[5] GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic synthesis[J]. CIESC Journal (化工学报), 2016, 67(2): 549-556.
conversion of dry syngas to ethanol and higher alcohols on cu-based [26] IYI N, TAKEKAWA S, KIMURA S. Crystal chemistry of
catalysts[J]. ACS Catal, 2011, 1(6): 641-656. hexaaluminates: β-alumina and magnetoplumbite structures[J]. J
[6] ELBASHIR N O, DUTTA P, MANIVANNAN A. Impact of Solid State Chem, 1989, 83(1): 8-19.
cobalt-based catalyst characteristics on the performance of conventional [27] KANG H K, PARK H C, KIM K H. Preparation of beta-alumina
gas-phase and supercritical-phase Fischer-Tropsch synthesis[J]. Appl powder from kaolin-derived aluminium sulphate solution[J]. J Mater
Catal A-Gen, 2005, 285(1): 169-180. Sci-Mater El, 1996, 7(6): 385-389.
[7] LIU Z X, YU X, XUE Y Y, et al. Synthesis, characterization, and [28] NIEMANTSVERDRIET J W, VAN DER KRAAN A M, VAN DIJK
Fischer–Tropsch performance of cobalt/zinc aluminate nanocomposites W L, et al. Behavior of metallic iron catalysts during
via a facile and corrosion-free coprecipitation route[J]. J Nanopart Fischer-Tropsch synthesis studied with Moessbauer spectroscopy,
Res, 2015, 17(2): 1-11. X-ray diffraction, carbon content determination, and reaction kinetic
[8] XING Y, LIU Z X, XUE Y Y, et al. Variation trends of CO measurements[J]. J Phys Chem, 1980, 84: 3363-3370.
hydrogenation performance of (Al)-O-(Zn) supported cobalt [29] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting
nanocomposites: Effects of gradual doping with Zn-O Lewis base[J]. physisorption data for gas/solid systems with special reference to the
Catal Lett, 2016, 146: 682-691. determination of surface area and porosity (Recommendations 1984)
[9] LIU Z Y, WU D P, XING Y, et al. Effect of in-situ sulfur poisoning [J]. Pure & Appl Chem, 1985, 57: 603-619.
on zinc-containing spinel-supported cobalt CO hydrogenation [30] MAITLIS P M, ZANOTTI V. The role of electrophilic species in the
catalyst [J]. Appl Catal A-Gen, 2016, 514: 164-172. Fischer-Tropsch reaction[J]. Chem Commun, 2009, 1619-1634.
[10] PENDYALA V R R, GRAHAM U M, JACOBS G, et al. Fischer– [31] MAITLIS P M, ZANOTTI V. Organometallic Models for Metal
Tropsch synthesis: Morphology, phase transformation, and carbon-layer Surface Reactions: Chain growth involving electrophilic methylidynes
growth of iron-based catalysts[J]. ChemCatChem, 2014, 6(7): 1952- in the Fischer-Tropsch reaction[J]. Catal Lett, 2008, 122: 80-83.
1960. [32] DRY M E, SHINGLES T, BOSHOFF L J, et al. Heats of
[11] DUAN J G (段建国), WANG Y X (王亚雄), LIU Q S (刘全生). chemisorption on promoted iron surfaces and the role of alkali in
Effects of K/Zr promoter on iron-based catalyst for CO Fischer-Tropsch synthesis[J]. J Catal, 1969, 15: 190-199.