Page 42 - 《精细化工》2020年第5期
P. 42

·892·                             精细化工   FINE CHEMICALS                                 第 37 卷

                 2019,31(19):1900509.                              metalloproteinase-sensitive  and  cathepsin  B-sensitive  probes[J].
            [33]  YAN M M, LIU Y J, ZHU X H, et al. Nanoscale reduced graphene   Theranostics, 2012, 2: 179-189.
                 oxide-mediated  photothermal  therapy  together  with  IDO  inhibition   [49]  ZHANG H C, SUN Z S, WANG K L, et al. Multifunctional tumor-
                 and PD-L1 blockade synergistically promote antitumor immunity[J].   targeting  cathepsin  B-sensitive  gemcitabine  prodrug  covalently
                 ACS Applied Materials & Interfacesr, 2019, 11: 1876-1885.     targets albumin in situ and improves cancer therapy[J]. Bioconjugate
            [34]  ZHOU B, JIANG B P, SUN W Y, et al. Water-dispersible prussian   Chemistry, 2018, 29: 1852-1858.
                 blue  hyaluronic  acid  nanocubes  with  near-infrared  photoinduced   [50]  DHEER  D,  NICOLAS  J,  SHANKAR  R.  Cathepsin-sensitive
                 singlet  oxygen  production  and  photothermal  activities  for  cancer   nanoscale  drug  delivery  systems  for  cancer  therapy  and  other
                 theranostics[J].  ACS  Applied  Materials  &  Interfaces,  2018,  10:   diseases[J].  Advanced  Drug  Delivery  Reviews,  2019,  151(152):
                 18036-18049.                                      130-151.
            [35]  CAI    J , GAO W, ZHANG L L, et al. Enabling prussian blue with   [51]  POURHASSAN  H,  CLERGEAUD  G,  HANSEN  A  E,  et al.
                 tunable  localized  surface  plasmon  resonances:  Simultaneously   Revisiting  the  use  of  SPLA2-sensitive  liposomes  in  cancer
                 enhanced  dual-mode  imaging  and  tumor  photothermal  therapy[J].   therapy[J]. Journal of Controlled Release, 2017, 261: 163-173.
                 ACS Nano, 2016, 10: 11115-11126.              [52]  PYATAEV  N  A,  PETROV  P  S,  MINAEVA  O  V,  et al.  Amylase-
            [36]  TIAN  Q  W,  WANG  Q,  YAO  K  X,  et al.  Multifunctional   sensitive  polymeric  nanoparticles  based  on  dextran  sulfate  and
                 polypyrrole@Fe 3O 4  nanoparticles  for  dual-modal  imaging  and  in   doxorubicin with anticoagulant activity[J]. Polymers, 2019, 11: 921.
                 vivo photothermal cancer therapy[J]. Small, 2014, 10: 1063-1068.     [53]  GUO  W,  YANG  C  Y,  CUI  L  R,  et al.  An  enzyme-responsive
            [37]  HU Sh Q, TONG L J, WANG J X, et al. NIR light-responsive hollow   controlled  release  system  of  mesoporous  silica  coated  with  konjac
                 porous gold nanospheres for controllable pressure-based sensing and   oligosaccharide[J]. Langmuir, 2014, 30(1): 243-249.
                 photothermal therapy of cancer cells[J]. Analytical Chemistry, 2019,   [54]  DU C L, DENG D W, SHAN L L, et al. A pH-sensitive doxorubicin
                 91: 15418-15424.                                  prodrug  based  on  folate-conjugated  BSA  for  tumor-targeted  drug
            [38]  MA  J  J,  LI  P  J,  WANG  W  W,  et al.  Biodegradable  poly(amino   delivery[J]. Biomaterials, 2013, 34: 3087-3097.
                 acid)-gold-magnetic  complex  with  efficient  endocytosis  for   [55]  LUO  Z  M,  JIN  K,  PANG  Q,  et al.  On-demand  drug  release  from
                 multimodal  imaging-guided  chemo-photothermal  therapy[J].  ACS   dual-targeting small nanoparticles triggered by high-intensity focused
                 Nano, 2018, 12: 9022-9032.                        ultrasound enhanced glioblastoma-targeting therapy[J]. ACS Applied
            [39]  LI H, JIN Z, CHAO S, et al. Folate-receptor-targeted NIR-sensitive   Materials & Interfaces, 2017, 9(37): 31612-31625.
                 polydopamine  nanoparticles  for  chemo-photothermal  cancer   [56]  DING  Y,  SUN  D,  WANG  G  L,  et al.  An  efficient  PEGylated
                 therapy[J]. Nanotechnology, 2017, 28(42): 425101.     liposomal  nanocarrier  containing  cell-penetrating  peptide  and
            [40]  ELINA H,  HAREL Y,  SCHORI H,  et al.  Magnetic  targeting  of   pH-sensitive  hydrazone  bond  for  enhancing  tumor-targeted  drug
                 mTHPC to improve the selectivity and efficiency of photodynamic   delivery[J].  International  journal  of  nanomedicine,  2015,  10:  6199-
                 therapy[J].  ACS  Applied  Materials  &  Interfaces,  2019,  11(49):   6214.
                 45368-45380.                                  [57]  ALIMORADI H,  MATIKONDA S S, GAMBLE B,  et al. Hypoxia
            [41]  QI  J,  LI  W  S,  LU  K  J,  et al.  pH  and  thermal  dual-sensitive   responsivedrug  delivery  systems  in  tumor  therapy[J].  Current
                 nanoparticle-mediated synergistic antitumor effect of immunotherapy   Pharmaceutical Design, 2016, 22: 2808-2820.
                 and  microwave  thermotherapy[J].  Nano  Letters,  2019,  19:  4949-   [58]  THAMBI T, PARK J, LEE D. Hypoxi-a-responsive nanocarriers for
                 4959.                                             cancer  imaging  and  therapy:  Recent  approaches  and  future
            [42]  QIN Y P, CHEN J, BI Y, et al. Near-infrared light remote-controlled   perspectives[J]. Chemical Communications, 2016, 52: 8492-8500.
                 intracellular  anti-cancer  drug  delivery  using  thermo/pH  sensitive   [59]  THAMBI T,  SON  S, LEE D,  et al.  Poly  (ethylene  glycol)-b-
                 nanovehicle[J]. Acta Biomaterialia, 2015, 17: 201-209.     poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive
            [43]  BAO  W,  MA  H  B,  WANG  N,  et al.  pH-sensitive  carbon  quantum   drug delivery[J]. Acta Biomaterialia, 2016, 29: 261-270.
                 dots-doxorubicin  nanoparticles  for  tumor  cellular  targeted  drug   [60]  DENG  X  R,  LIANG  S,  CAI  X  C,  et al.  Yolk-shell  structured  Au
                 delivery[J].  Polymers  for  Advanced  Technologies,  2019,  30(11):   nanostar@metal-organic   framework   for   synergistic   chemo-
                 2664-2673.                                        photothermal  therapy  in  the  second  near-infrared  window[J].  Nano
            [44]  HERNÁNDEZ-CASTILLO  D  J,  ALVEREZ-LEMUS  M  A,   Letters, 2019, 19(10): 6772-6780.
                 CRUZ-HERNáNDEZ  E  N,  et al.  Selective  etching  of  SiO 2   [61]  SUN Y, DING F, CHEN Z, et al. Melanin-dot-mediated delivery of
                 nanospheres  as  reservoirs  for  pH-sensitive  release  of  cis-   metallacycle  for  NIR-II/photoacoustic  dual-modal  imaging-guided
                 diamminedichloroplatinum(2)[J].  Journal  Chemical  Technology  and   chemo-photothermal  synergistic  therapy[J].  Proceedings  of  the
                 Biotechnology, 2019, 94: 3505-3511.               National Academy of Sciences of the United States of Americ, 2019,
            [45]  LI  M  Q,  TANG  Z  H,  LV  S  X,  et al.  Cisplatin  crosslinked   116(34): 16729-16735.
                 pH-sensitive  nanoparticles  for  efficient  delivery  of  doxorubicin[J].   [62]  BANERJEE  S  S,  CHEN  D.  Multifunctional  pH-sensitive  magnetic
                 Biomaterial, 2014, 35(12): 3851-3864.             nanoparticles  for  simultaneous  imaging,  sensing  and  targeted
            [46]  PORTA  F,  EHRSAM  D,  LENGERKE  C,  et al.  Synthesis  and   intracellular  anticancer  drug  delivery[J].  Nanotechnology,  2008,
                 characterization  of  PDMS-PMOXA-based  polymer-somes  sensitive   19(50):505104.
                 to  MMP-9  for  application  in  breast  cancer[J].  Molecular   [63]  WANG  Y  H,  SONG  S  Y,  LIU  J  H,  et al.  ZnO  functionalized
                 Pharmacology, 2018, 15: 4884-4897.                upconverting nanotheranostic agent: multi modality imaging guided
            [47]  YOU  Y  W,  XU  Y,  CHEN  Y.  Doxorubicin  conjugated  with  a   chemotherapy  with  on  demand  drug  release  triggered  by  pH[J].
                 trastuzumab epitope and an MMP-2 sensitive peptide linker for the   Angewandte Chemie International Edition, 2015, 54(2): 536-540.
                 treatment  of  HER2-positive  breast  cancer[J].  Drug  Delivery,  2018,   [64]  LI Y H, WU Y X, CHEN J T, et al. A simple glutathione-responsive
                 25: 448-460.                                      turn-on theranostic nanoparticle for dual-modal imaging and chemo-
            [48]  YHEE  J  Y,  KIM  S  A,  KOO  H,  et al.  Optical  imaging  of   photothermal  combination  therapy[J].  Nano  Letters,  2019,  19(8):
                 cancer-related  proteases  using  near-infrared  fluorescence  matrix   5806-5817.
   37   38   39   40   41   42   43   44   45   46   47