Page 20 - 《精细化工》2020年第6期
P. 20

·1086·                            精细化工   FINE CHEMICALS                                 第 37 卷

            等 [62-63] 分别在小盒内进行模拟计算,由于管长是有限                     [3]   WANG  X  ( 王旭 ),  HUANG  R  ( 黄锐 ).  Research  progress  of
            的,边界处存在非谐声子-声子散射(Umklapp 散射                            polymer-based  nanocomposites[J].  Plastics  (塑料),  2000,  29(4):
                                                                   25-30, 37.
            过程)。结果表明:室温下,CNTs 在水中的声子                           [4]   LIAO  Q  W,  LIU  Z  C,  LIU  W,  et al.  Extremely  high  thermal
            MFP 为微米级     [64] 。除非谐声子散射以外,也可以从                      conductivity of aligned carbon nanotube-polyethylene composites[J].
                                                                   Scientific Reports, 2015, 5: 16543.
            声子模型的四大核心理论 MFP 谱:声子有源模数、
                                                               [5]   JANG S P, CHOI S U S. Role of Brownian motion in the enhanced
            边界表面散射、声子自由程和 Umklapp 散射(非谐                            thermal conductivity of nanofluids[J]. Applied Physics Letters, 2004,
            声子或电子声子散射过程)             [60,65] 等,分析声子 MFP            84(21): 4316-4318.
                                                               [6]   WANG P  Y (王璞玉),  HU  X  X  (胡旭晓),  ZHOU  J  (周洁),  et al.
            的长短,得出对导热系数影响的相关因素。                                    Research status and application of heat conduction model of polymer
                                                                   matrix  composite[J].  Materials  Review  (材料导报),  2010,  24(9):
            2   结束语                                                108-112.
                                                               [7]   FAN Z, GONG F,  NGUYEN S  T, et al. Advanced  multifunctional
                 前期研究已经建立了较完善的碳纳米管/聚合                              graphene aerogel–poly (methyl methacrylate) composites: Experiments
                                                                   and modeling[J]. Carbon, 2015, 81(1): 396-404.
            物复合材料导热模型,其中 CNTs 填充体积分数常                          [8]   SAVIN  A  V,  HU  B,  KIVSHAR  Y  S.  Thermal  conductivity  of
            作为直接考虑因素,当添加颗粒以微米级或毫米级                                 single-walled carbon nanotubes[J]. Physical Review B, 2009, 80(19):
                                                                   195423.
            直径按体积分数低于 3%分散在基体材料连续介质
                                                               [9]   CHO  S,  KIKUCHI  K,  MIYAZAKI  T,  et al.  Multiwalled  carbon
            中时,预测值与实验测量值有较好的一致性,前述                                 nanotubes as a contributing reinforcement phase for the improvement
            这几种模型预测结果之间的差别很小                  [66] 。但是 CNTs        of  thermal  conductivity  in  copper  matrix  composites[J].  Scripta
                                                                   Materialia, 2010, 63(4): 375-378.
            填充聚合物导热模型的适用条件单一,在对 CNTs
                                                               [10]  JAKUBINEK M B, JOHNSON M B, WHITE M A, et al. Thermal
            直径(d)、长度(L)以及 CNTs 的纵横比等微观因                            and  electrical  conductivity  of  array-spun  multi-walled  carbon
            素以及碳原子的晶体(位点)的排列、缺陷的数量、                                nanotube yarns[J]. Carbon, 2012, 50(1): 244-248.
                                                               [11]  MRINAL B. Polymer nanocomposites-a comparison between carbon
            形态、杂质的存在等进行处理时常进行简化处理                      [67] 。      nanotubes,  graphene,  and  clay  as  nanofillers[J].  Materials,  2016,
            材料中 CNTs 与基体之间的两相分子界面上,界面                              9(4): 262.
                                                               [12]  WANG  J  F,  XIE  H  Q,  ZHONG  X,  et al.  Enhancing  thermal
            热阻等因素也没有进行深入表征和计算,导热模型
                                                                   conductivity  of  palmitic  acid  based  phase  change  materials  with
            进行近似或者忽略处理,导致适用性较差、预测准                                 carbon nanotubes as fillers[J]. Solar Energy, 2010, 84(2): 339-344.
            确性较低。目前,文献报道导热模型的研究存在的                             [13]  CHOI  S  U  S,  Zhang  Z  G,  Yu  W,  et al.  Anomalous  thermal
                                                                   conductivity  enhancement  in  nanotube  suspension  ns[J].  Applied
            问题主要为两方面:一方面,从分子角度来看忽略
                                                                   Physics Letters, 2001, 79(14): 2252-2254.
            了 CNTs 的纵横比、CNTs 和聚合物基体分子之间的                       [14]  ZHOU T, WANG X, LIU X H, et al. Improved thermal conductivity
            界面热阻以及填料分子之间的相互作用                   [68-69] ;另一        of  epoxy  composites  using  a  hybrid  multiwalled  carbon  nanotube/
                                                                   micro-SiC filler[J]. Carbon, 2010, 48(4):1171-1176.
            方面,从复合材料整体来看对 CNTs 和基体之间热                          [15]  HONE  J,  LLAGUNO  M  C,  BIERRCUKI  M  J,  et al.  Thermal
            传导机理探究不够,预测导热系数与体积分数之间                                 properties of carbon nanotubes and nanotube-based materials[J]. Applied
            的相关性和实验探究结果相差较大,且对高浓度的                                 Physics A (Materials Science Processing), 2002, 74(3): 339-343.
                                                               [16]  SARKAR S, ZIMMERMANN K, LENG W, et al. Measurement of
            推广性较差      [70] 。                                      the  thermal  conductivity  of  carbon  nanotube-tissue  phantom
                 未来导热模型的研究主要对模型参数采用数值                              composites with the hot wire probe method[J]. Annals of Biomedical
                                                                   Engineering, 2011, 39(6): 1745-1758.
            模拟计算方法进行深层次修正,提高导热模型预测
                                                               [17]  GUO Y, XU G, YANG X, et al. Significantly enhanced and precisely
            的准确性。碳纳米管/聚合物复合材料相关导热模型                                modeled  thermal  conductivity  in  polyimide  nanocomposites  with
            的物理意义的探究,不仅是导热模型修正研究工作                                 chemically  modified  graphene  via  in  situ  polymerization  and
                                                                   electrospinning-hot  press  technology[J].  Journal  of  Materials
            的难点,而且对其他体系复合材料导热性能影响因
                                                                   Chemistry C, 2018, 6(12): 3004-3015.
            素有实际的借鉴意义。精准计算和预测材料的导热                             [18]  BIGG  D  M.  Thermal  conductivity  of  heterophase  polymer
            性能,对制备高导热复合材料有直接参考价值,在                                 compositions[J]. Advances in Polymer Science, 1995, 119(2): 1-30.
                                                               [19]  HASSANZADEH-AGHDAM M K, ANSARI R. Thermal conductivity
            民用、军用以及航空航天等领域都有重大意义。                                  of shape memory polymer nanocomposites containing carbon nanotubes:
                                                                   A  micromechanical  approach[J].  Composites  Part  B:  Engineering,
            参考文献:                                                  2019, 162: 167-177.
            [1]   JANG  G  H,  YANG  B,  KHIL  M  S,  et al.  Comprehensive  study  of   [20]  ZHOU  H,  ZHANG  S  M,  YANG  M  S.  The  effect  of  heat-transfer
                 effects of filler length on mechanical, electrical, and thermal properties   passages on the effective thermal conductivity of high filler loading
                 of multi-walled carbon nanotube/polyamide 6 composites[J]. Composites   composite  materials[J].  Composites  Science  and  Technology,  2007,
                 Part A: Applied Science and Manufacturing, 2019, 125: 105542.     67(6): 1035-1040.
            [2]   LI S H, YU X X, BAO H, et al. High thermal conductivity of bulk   [21]  PRAKOURAS  A  G,  VACHON  R  I,  CRANE  R  A,  et al.  Thermal
                 epoxy  resin  by  bottom-up  parallel-linking  and  strain:  A  molecular   conductivity  of  heterogeneous  mixtures[J].  International  Journal  of
                 dynamics study[J]. Journal of Physical Chemistry: C, 2018, 122(24):   Heat and Mass Transfer, 1978, 21(8): 1157-1166.
                 13140-13147.                                  [22]  NEWCOMB  B  A,  GIANNZZI  L  A,  LYONS  K  M,  et al.  High
   15   16   17   18   19   20   21   22   23   24   25