Page 20 - 《精细化工》2020年第6期
P. 20
·1086· 精细化工 FINE CHEMICALS 第 37 卷
等 [62-63] 分别在小盒内进行模拟计算,由于管长是有限 [3] WANG X ( 王旭 ), HUANG R ( 黄锐 ). Research progress of
的,边界处存在非谐声子-声子散射(Umklapp 散射 polymer-based nanocomposites[J]. Plastics (塑料), 2000, 29(4):
25-30, 37.
过程)。结果表明:室温下,CNTs 在水中的声子 [4] LIAO Q W, LIU Z C, LIU W, et al. Extremely high thermal
MFP 为微米级 [64] 。除非谐声子散射以外,也可以从 conductivity of aligned carbon nanotube-polyethylene composites[J].
Scientific Reports, 2015, 5: 16543.
声子模型的四大核心理论 MFP 谱:声子有源模数、
[5] JANG S P, CHOI S U S. Role of Brownian motion in the enhanced
边界表面散射、声子自由程和 Umklapp 散射(非谐 thermal conductivity of nanofluids[J]. Applied Physics Letters, 2004,
声子或电子声子散射过程) [60,65] 等,分析声子 MFP 84(21): 4316-4318.
[6] WANG P Y (王璞玉), HU X X (胡旭晓), ZHOU J (周洁), et al.
的长短,得出对导热系数影响的相关因素。 Research status and application of heat conduction model of polymer
matrix composite[J]. Materials Review (材料导报), 2010, 24(9):
2 结束语 108-112.
[7] FAN Z, GONG F, NGUYEN S T, et al. Advanced multifunctional
前期研究已经建立了较完善的碳纳米管/聚合 graphene aerogel–poly (methyl methacrylate) composites: Experiments
and modeling[J]. Carbon, 2015, 81(1): 396-404.
物复合材料导热模型,其中 CNTs 填充体积分数常 [8] SAVIN A V, HU B, KIVSHAR Y S. Thermal conductivity of
作为直接考虑因素,当添加颗粒以微米级或毫米级 single-walled carbon nanotubes[J]. Physical Review B, 2009, 80(19):
195423.
直径按体积分数低于 3%分散在基体材料连续介质
[9] CHO S, KIKUCHI K, MIYAZAKI T, et al. Multiwalled carbon
中时,预测值与实验测量值有较好的一致性,前述 nanotubes as a contributing reinforcement phase for the improvement
这几种模型预测结果之间的差别很小 [66] 。但是 CNTs of thermal conductivity in copper matrix composites[J]. Scripta
Materialia, 2010, 63(4): 375-378.
填充聚合物导热模型的适用条件单一,在对 CNTs
[10] JAKUBINEK M B, JOHNSON M B, WHITE M A, et al. Thermal
直径(d)、长度(L)以及 CNTs 的纵横比等微观因 and electrical conductivity of array-spun multi-walled carbon
素以及碳原子的晶体(位点)的排列、缺陷的数量、 nanotube yarns[J]. Carbon, 2012, 50(1): 244-248.
[11] MRINAL B. Polymer nanocomposites-a comparison between carbon
形态、杂质的存在等进行处理时常进行简化处理 [67] 。 nanotubes, graphene, and clay as nanofillers[J]. Materials, 2016,
材料中 CNTs 与基体之间的两相分子界面上,界面 9(4): 262.
[12] WANG J F, XIE H Q, ZHONG X, et al. Enhancing thermal
热阻等因素也没有进行深入表征和计算,导热模型
conductivity of palmitic acid based phase change materials with
进行近似或者忽略处理,导致适用性较差、预测准 carbon nanotubes as fillers[J]. Solar Energy, 2010, 84(2): 339-344.
确性较低。目前,文献报道导热模型的研究存在的 [13] CHOI S U S, Zhang Z G, Yu W, et al. Anomalous thermal
conductivity enhancement in nanotube suspension ns[J]. Applied
问题主要为两方面:一方面,从分子角度来看忽略
Physics Letters, 2001, 79(14): 2252-2254.
了 CNTs 的纵横比、CNTs 和聚合物基体分子之间的 [14] ZHOU T, WANG X, LIU X H, et al. Improved thermal conductivity
界面热阻以及填料分子之间的相互作用 [68-69] ;另一 of epoxy composites using a hybrid multiwalled carbon nanotube/
micro-SiC filler[J]. Carbon, 2010, 48(4):1171-1176.
方面,从复合材料整体来看对 CNTs 和基体之间热 [15] HONE J, LLAGUNO M C, BIERRCUKI M J, et al. Thermal
传导机理探究不够,预测导热系数与体积分数之间 properties of carbon nanotubes and nanotube-based materials[J]. Applied
的相关性和实验探究结果相差较大,且对高浓度的 Physics A (Materials Science Processing), 2002, 74(3): 339-343.
[16] SARKAR S, ZIMMERMANN K, LENG W, et al. Measurement of
推广性较差 [70] 。 the thermal conductivity of carbon nanotube-tissue phantom
未来导热模型的研究主要对模型参数采用数值 composites with the hot wire probe method[J]. Annals of Biomedical
Engineering, 2011, 39(6): 1745-1758.
模拟计算方法进行深层次修正,提高导热模型预测
[17] GUO Y, XU G, YANG X, et al. Significantly enhanced and precisely
的准确性。碳纳米管/聚合物复合材料相关导热模型 modeled thermal conductivity in polyimide nanocomposites with
的物理意义的探究,不仅是导热模型修正研究工作 chemically modified graphene via in situ polymerization and
electrospinning-hot press technology[J]. Journal of Materials
的难点,而且对其他体系复合材料导热性能影响因
Chemistry C, 2018, 6(12): 3004-3015.
素有实际的借鉴意义。精准计算和预测材料的导热 [18] BIGG D M. Thermal conductivity of heterophase polymer
性能,对制备高导热复合材料有直接参考价值,在 compositions[J]. Advances in Polymer Science, 1995, 119(2): 1-30.
[19] HASSANZADEH-AGHDAM M K, ANSARI R. Thermal conductivity
民用、军用以及航空航天等领域都有重大意义。 of shape memory polymer nanocomposites containing carbon nanotubes:
A micromechanical approach[J]. Composites Part B: Engineering,
参考文献: 2019, 162: 167-177.
[1] JANG G H, YANG B, KHIL M S, et al. Comprehensive study of [20] ZHOU H, ZHANG S M, YANG M S. The effect of heat-transfer
effects of filler length on mechanical, electrical, and thermal properties passages on the effective thermal conductivity of high filler loading
of multi-walled carbon nanotube/polyamide 6 composites[J]. Composites composite materials[J]. Composites Science and Technology, 2007,
Part A: Applied Science and Manufacturing, 2019, 125: 105542. 67(6): 1035-1040.
[2] LI S H, YU X X, BAO H, et al. High thermal conductivity of bulk [21] PRAKOURAS A G, VACHON R I, CRANE R A, et al. Thermal
epoxy resin by bottom-up parallel-linking and strain: A molecular conductivity of heterogeneous mixtures[J]. International Journal of
dynamics study[J]. Journal of Physical Chemistry: C, 2018, 122(24): Heat and Mass Transfer, 1978, 21(8): 1157-1166.
13140-13147. [22] NEWCOMB B A, GIANNZZI L A, LYONS K M, et al. High