Page 21 - 《精细化工》2020年第6期
P. 21
第 6 期 张萌萌,等: 碳纳米管/聚合物复合材料的导热模型进展 ·1087·
resolution transmission electron microscopy study on polyacrylonitrile/ nanotube composites[J]. Nanotechnology, 2006, 17(6): 1655.
carbon nanotube based carbon fibers and the effect of structure [41] NAGARAJ M, TIMOTHY J, MESCHKE G. The effective thermal
development on the thermal and electrical conductivities[J]. Carbon, conductivity of carbon nanotube composites[J]. Proceedings in Applied
2015, 93: 502-514. Mathematics and Mechanics, 2017, 17(1): 613-614.
[23] MARTIN-GALLEGO M, VERDEJO R, KHAYET M, et al. Thermal [42] JANG S H, YIN H. Effective electrical conductivity of carbon
conductivity of carbon nanotubes and graphene in epoxy nanofluids nanotube-polymer composites: A simplified model and its validation[J].
and nanocomposites[J]. Nanoscale Research Letters, 2011, 6(1): Materials Research Express, 2015, 2(4): 045602.
610-614. [43] HAMILTON R L, CROSSER O K. Thermal conductivity of
[24] HUANG X Y, ZHI C Y, JIANG P K. Toward effective synergetic heterogeneous two-component systems[J]. Industrial & Engineering
effects from graphene nanoplatelets and carbon nanotubes on thermal Chemistry Fundamentals, 1962, 1(3): 187-191.
conductivity of ultrahigh volume fraction nanocarbon epoxy [44] FRICKE H. A mathematical treatment of the electric conductivity
composites[J]. Journal of Physical Chemistry C, 2012, 116(44): and capacity of disperse systems I. the electric conductivity of a
23812-23820. suspension of homogeneous spheroids[J]. Physical Review, 1924,
[25] ZABIHI Z, ARGHI H. Effective thermal conductivity of carbon 24(5): 575-587.
nanostructure based polyethylene nanocomposite: Influence of [45] LU S Y, LIN H C. Effective conductivity of composites containing
defected, doped, and hybrid filler[J]. International Journal of Thermal aligned spheroidal inclusions of finite conductivity[J]. Journal of
Sciences, 2017, 120: 185-189. Applied Physics, 1996, 79(9): 6761-6769.
[26] ZHAI S P, ZHANG P, XIAN Y Q, et al. Effective thermal [46] YU Y, ZHANG Q, XIE J, et al. Engineering the architectural diversity
conductivity of polymer composites: theoretical models and simulation of heterogeneous metallic nanocrystals[J]. Nature Communications,
models[J]. International Journal of Heat and Mass Transfer, 2018, 2013, 4: 1454.
117: 358-374. [47] JEFFREY D J. Group expansions for the bulk properties of a
[27] YANG X, LIANG C B, MA T, et al. A review on thermally statistically homogeneous, random suspension[J]. Proceedings of the
conductive polymeric composites: Classification, measurement, model Royal Society A: Mathematical, Physical and Engineering Sciences,
and equations, mechanism and fabrication methods[J]. Advanced 1974, 338(1615): 503-516.
Composites and Hybrid Materials, 2018, 1(2): 207-230. [48] BONNECAZE R, F BRADY J. A method for determining the
[28] AGARI Y, Uno T. Estimation on thermal conductivities of filled effective conductivity of dispersions of particles[J]. Proceedings of
polymers[J]. Journal of Applied Polymer Science, 2003, 32(7): the Royal Society A: Mathematical, Physical and Engineering
5705-5712. Sciences, 1990, 430(1879): 285-313.
[29] DUONG H M, PAPAVASSILIOU D V, Mullen K J, et al. [49] BONNECAZE R T, BRADY J F. The effective conductivity of
Computational modeling of the thermal conductivity of single-walled random suspensions of spherical particles[J]. Proceedings of the
carbon nanotube–polymer composites[J]. Nanotechnology, 2008, Royal Society A: Mathematical, Physical and Engineering Sciences,
19(6): 065702. 1991, 432(1886): 445-465.
[30] MAXWELL J C A. A treatise on electricity and magnetism[J]. [50] MCLACHLAN D S, BLASZKIEWICS M, YOSHIKAWA S, et al. A
Nature, 1954, 7(182): 478-480. study of the volume fraction, temperature and pressure dependence
[31] NAN C W, SHI Z, LIN Y H. A simple model for thermal of the resistivity in a ceramic–polymer composite using a general
conductivity of carbon nanotube-based composites[J]. Chemical effective media equation[J]. Journal of Materials Science, 1990,
Physics Letters, 2003, 375(5/6): 666-669. 195(21): 5899-5903.
[32] NAN C W, LIU G, LIN Y H, et al. Interface effect on thermal [51] CLANCY T C, GATES T S. Modeling of interfacial modification
conductivity of carbon nanotube composites[J]. Applied Physics effects on thermal conductivity of carbon nanotube composites[J].
Letters, 2004, 85(16): 3549-3551. Polymer, 2006, 47(16): 5990-5996.
[33] SHAHIL K M F, BALANDIN A A. Graphene-multilayer graphene [52] NI Y, HAN H, VOLZ S, et al. Nanoscale azide polymer
nanocomposites as highly efficient thermal interface materials[J]. functionalization: A robust solution for suppressing the carbon
Nano Letters, 2012, 12(2): 861-867. nanotube–polymer matrix thermal interface resistance[J]. The Journal
[34] MOHEIMANI R, HASANSADE M. A closed-form model for of Physical Chemistry C, 2015, 119(22): 12193-12198.
estimating the effective thermal conductivities of carbon nanotube– [53] CHOI H K, JUNG H, OH Y, et al. Analysis of the influence of
polymer nanocomposites[J]. Proceedings of the Institution of interphase characteristics on thermal conduction in surface-modified
Mechanical Engineers, Part C: Journal of Mechanical Engineering carbon nanotube-reinforced composites using an analytical model[J].
Science, 2019, 233(8): 2909-2919. Composites Science and Technology, 2018, 168: 145-151.
[35] MICAELA C, MASSIMO R, SHAHZAD M I, et al. Conductivity in [54] YU J, CHOI H K, KIM H S, et al. Synergistic effect of hybrid
carbon nanotube polymer composites: a comparison between model graphene nanoplatelet and multi-walled carbon nanotube fillers on
and experiment[J]. Composites, Part A: Applied Science and the thermal conductivity of polymer composites and theoretical
Manufacturing, 2016, 87: 237-242. modeling of the synergistic effect[J]. Composites, Part A: Applied
[36] DAVIS R H. The effective thermal conductivity of a composite Science and Manufacturing, 2016, 88: 79-85.
material with spherical inclusions[J]. International Journal of [55] THOMAS J A, IUTZI R M, MCGAGHEY A J H. Thermal
Thermophysics, 1986, 7(3): 609-620. conductivity and phonon transport in empty and water-filled carbon
[37] MORISHITA T, MATSUSHITA M, KATAGIRI Y, et al. A novel nanotubes[J]. Physical Review B, 2010, 81(4): 045413.
morphological model for carbon nanotube/polymer composites [56] JI T, FENG Y, QIN M, et al. Thermal conducting properties of
having high thermal conductivity and electrical insulation[J]. Journal aligned carbon nanotubes and their polymer composites[J].
of Materials Chemistry, 2011, 21(15): 5610-5614. Composites, Part A: Applied Science and Manufacturing, 2016,
[38] LIU M S, LIN C C, HUANG I T, et al. Enhancement of thermal 91(1): 351-369.
conductivity with carbon nanotube for nanofluids[J]. International [57] ZHOU B, LUO W, YANG J, et al. Simulation of dispersion and
Communications in Heat and Mass Transfer, 2005, 32(9): 1202-1210. alignment of carbon nanotubes in polymer flow using dissipative
[39] XUE Q Z. Model for effective thermal conductivity of nanofluids[J]. particle dynamics[J]. Computational Materials Science, 2017, 126:
Physics Letters A, 2003, 307(5/6): 313-317. 35-42.
[40] XUE Q Z. Model for the effective thermal conductivity of carbon (下转第 1106 页)