Page 21 - 《精细化工》2020年第6期
P. 21

第 6 期                     张萌萌,等:  碳纳米管/聚合物复合材料的导热模型进展                                   ·1087·


                 resolution transmission electron microscopy study on polyacrylonitrile/   nanotube composites[J]. Nanotechnology, 2006, 17(6): 1655.
                 carbon  nanotube  based  carbon  fibers  and  the  effect  of  structure   [41]  NAGARAJ M,  TIMOTHY J, MESCHKE G.  The effective thermal
                 development on the thermal and electrical conductivities[J]. Carbon,   conductivity of carbon nanotube composites[J]. Proceedings in Applied
                 2015, 93: 502-514.                                Mathematics and Mechanics, 2017, 17(1): 613-614.
            [23]  MARTIN-GALLEGO M, VERDEJO R, KHAYET M, et al. Thermal   [42]  JANG  S  H,  YIN  H.  Effective  electrical  conductivity  of  carbon
                 conductivity of carbon nanotubes and graphene in epoxy nanofluids   nanotube-polymer composites: A simplified model and its validation[J].
                 and  nanocomposites[J].  Nanoscale  Research  Letters,  2011,  6(1):   Materials Research Express, 2015, 2(4): 045602.
                 610-614.                                      [43]  HAMILTON  R  L,  CROSSER  O  K.  Thermal  conductivity  of
            [24]  HUANG  X  Y,  ZHI  C  Y,  JIANG  P  K.  Toward  effective  synergetic   heterogeneous two-component systems[J]. Industrial & Engineering
                 effects from graphene nanoplatelets and carbon nanotubes on thermal   Chemistry Fundamentals, 1962, 1(3): 187-191.
                 conductivity  of  ultrahigh  volume  fraction  nanocarbon  epoxy   [44]  FRICKE  H.  A  mathematical  treatment  of  the  electric  conductivity
                 composites[J].  Journal  of  Physical  Chemistry  C,  2012,  116(44):   and  capacity  of  disperse  systems  I.  the  electric  conductivity  of  a
                 23812-23820.                                      suspension  of  homogeneous  spheroids[J].  Physical  Review,  1924,
            [25]  ZABIHI  Z,  ARGHI  H.  Effective  thermal  conductivity  of  carbon   24(5): 575-587.
                 nanostructure  based  polyethylene  nanocomposite:  Influence  of   [45]  LU S Y, LIN H C. Effective conductivity of composites containing
                 defected, doped, and hybrid filler[J]. International Journal of Thermal   aligned  spheroidal  inclusions  of  finite  conductivity[J].  Journal  of
                 Sciences, 2017, 120: 185-189.                     Applied Physics, 1996, 79(9): 6761-6769.
            [26]  ZHAI  S  P,  ZHANG  P,  XIAN  Y  Q,  et al.  Effective  thermal   [46]  YU Y, ZHANG Q, XIE J, et al. Engineering the architectural diversity
                 conductivity of polymer composites: theoretical models and simulation   of heterogeneous metallic nanocrystals[J]. Nature Communications,
                 models[J].  International  Journal  of  Heat  and  Mass  Transfer,  2018,   2013, 4: 1454.
                 117: 358-374.                                 [47]  JEFFREY  D  J.  Group  expansions  for  the  bulk  properties  of  a
            [27]  YANG  X,  LIANG  C  B,  MA  T,  et al.  A  review  on  thermally   statistically homogeneous, random suspension[J]. Proceedings of the
                 conductive polymeric composites: Classification, measurement, model   Royal Society A: Mathematical, Physical and Engineering Sciences,
                 and  equations,  mechanism  and  fabrication  methods[J].  Advanced   1974, 338(1615): 503-516.
                 Composites and Hybrid Materials, 2018, 1(2): 207-230.   [48]  BONNECAZE  R,  F  BRADY  J.  A  method  for  determining  the
            [28]  AGARI  Y,  Uno  T.  Estimation  on  thermal  conductivities  of  filled   effective  conductivity  of  dispersions  of  particles[J].  Proceedings  of
                 polymers[J].  Journal  of  Applied  Polymer  Science,  2003,  32(7):   the  Royal  Society  A:  Mathematical,  Physical  and  Engineering
                 5705-5712.                                        Sciences, 1990, 430(1879): 285-313.
            [29]  DUONG  H  M,  PAPAVASSILIOU  D  V,  Mullen  K  J,  et al.   [49]  BONNECAZE  R  T,  BRADY  J  F.  The  effective  conductivity  of
                 Computational modeling of the thermal conductivity of single-walled   random  suspensions  of  spherical  particles[J].  Proceedings  of  the
                 carbon  nanotube–polymer  composites[J].  Nanotechnology,  2008,   Royal Society A: Mathematical, Physical and Engineering Sciences,
                 19(6): 065702.                                    1991, 432(1886): 445-465.
            [30]  MAXWELL  J  C  A.  A  treatise  on  electricity  and  magnetism[J].   [50]  MCLACHLAN D S, BLASZKIEWICS M, YOSHIKAWA S, et al. A
                 Nature, 1954, 7(182): 478-480.                    study of the volume fraction, temperature and pressure dependence
            [31]  NAN  C  W,  SHI  Z,  LIN  Y  H.  A  simple  model  for  thermal   of  the  resistivity  in  a  ceramic–polymer  composite  using  a  general
                 conductivity  of  carbon  nanotube-based  composites[J].  Chemical   effective  media  equation[J].  Journal  of  Materials  Science,  1990,
                 Physics Letters, 2003, 375(5/6): 666-669.         195(21): 5899-5903.
            [32]  NAN  C W,  LIU  G, LIN Y  H,  et al.  Interface  effect  on  thermal   [51]  CLANCY  T  C,  GATES  T  S.  Modeling  of  interfacial  modification
                 conductivity  of  carbon  nanotube  composites[J].  Applied  Physics   effects  on  thermal  conductivity  of  carbon  nanotube  composites[J].
                 Letters, 2004, 85(16): 3549-3551.                 Polymer, 2006, 47(16): 5990-5996.
            [33]  SHAHIL K M F, BALANDIN A A. Graphene-multilayer graphene   [52]  NI  Y,  HAN  H,  VOLZ  S, et al.  Nanoscale  azide  polymer
                 nanocomposites  as  highly  efficient  thermal  interface  materials[J].   functionalization:  A  robust  solution  for  suppressing  the  carbon
                 Nano Letters, 2012, 12(2): 861-867.               nanotube–polymer matrix thermal interface resistance[J]. The Journal
            [34]  MOHEIMANI  R,  HASANSADE  M.  A  closed-form  model  for   of Physical Chemistry C, 2015, 119(22): 12193-12198.
                 estimating the effective thermal conductivities of carbon nanotube–   [53]  CHOI H K,  JUNG  H, OH  Y,  et al.  Analysis  of  the  influence  of
                 polymer  nanocomposites[J]. Proceedings  of  the  Institution  of   interphase characteristics on thermal conduction in surface-modified
                 Mechanical  Engineers,  Part  C:  Journal  of  Mechanical  Engineering   carbon nanotube-reinforced composites using an analytical model[J].
                 Science, 2019, 233(8): 2909-2919.                 Composites Science and Technology, 2018, 168: 145-151.
            [35]  MICAELA C, MASSIMO R, SHAHZAD M I, et al. Conductivity in   [54]  YU  J,  CHOI  H  K,  KIM  H  S,  et al.  Synergistic  effect  of  hybrid
                 carbon nanotube polymer composites: a comparison between model   graphene  nanoplatelet  and  multi-walled  carbon  nanotube  fillers  on
                 and  experiment[J].  Composites,  Part  A:  Applied  Science  and   the  thermal  conductivity  of  polymer  composites  and  theoretical
                 Manufacturing, 2016, 87: 237-242.                 modeling  of  the  synergistic  effect[J].  Composites,  Part  A:  Applied
            [36]  DAVIS  R  H.  The  effective  thermal  conductivity  of  a  composite   Science and Manufacturing, 2016, 88: 79-85.
                 material  with  spherical  inclusions[J].  International  Journal  of   [55]  THOMAS  J  A,  IUTZI  R  M,  MCGAGHEY  A  J  H.  Thermal
                 Thermophysics, 1986, 7(3): 609-620.               conductivity and phonon transport in empty and water-filled carbon
            [37]  MORISHITA  T,  MATSUSHITA  M,  KATAGIRI  Y,  et al.  A  novel   nanotubes[J]. Physical Review B, 2010, 81(4): 045413.
                 morphological  model  for  carbon  nanotube/polymer  composites   [56]  JI  T, FENG  Y, QIN M,  et al.  Thermal  conducting  properties  of
                 having high thermal conductivity and electrical insulation[J]. Journal   aligned  carbon  nanotubes  and  their  polymer  composites[J].
                 of Materials Chemistry, 2011, 21(15): 5610-5614.   Composites,  Part  A:  Applied  Science  and  Manufacturing,  2016,
            [38]  LIU  M  S,  LIN  C  C,  HUANG  I  T,  et al.  Enhancement  of  thermal   91(1): 351-369.
                 conductivity  with  carbon  nanotube  for  nanofluids[J].  International   [57]  ZHOU  B,  LUO  W,  YANG  J,  et al.  Simulation  of  dispersion  and
                 Communications in Heat and Mass Transfer, 2005, 32(9): 1202-1210.   alignment  of  carbon  nanotubes  in  polymer  flow  using  dissipative
            [39]  XUE Q Z. Model for effective thermal conductivity of nanofluids[J].   particle  dynamics[J].  Computational  Materials  Science,  2017,  126:
                 Physics Letters A, 2003, 307(5/6): 313-317.       35-42.
            [40]  XUE  Q  Z.  Model  for  the  effective  thermal  conductivity  of  carbon   (下转第 1106 页)
   16   17   18   19   20   21   22   23   24   25   26