Page 131 - 《精细化工》2020年第7期
P. 131
第 7 期 狄 玲,等: 含三苯胺铱(Ⅲ)配合物对硝基芳香化合物的高效发光检测 ·1413·
量转移作用 [30] 。图 7 为 Ir-TPA 的发射光谱及 4 种 [8] SYLVIA J M, JANNI J A, KLEIN J, et al. Surface-enhanced Raman
detection of 2, 4-dinitrotoluene impurity vapor as a marker to locate
NACs 的吸收光谱。如图 7 所示,Ir-TPA 的发射光 landmines[J]. Analytical Chemistry, 2000, 72(23): 5834-5840.
[9] LUGGAR R, FARQUHARSON M, HORROCKS J, et al. Multivariate
谱与 4 种 NACs 的吸收光谱无交叠。因此,Ir-TPA analysis of statistically poor EDXRD spectra for the detection of
concealed explosives[J]. X-Ray Spectrometry: An International
与 4 种 NACs 之间无共振能量转移作用,综上, Journal, 1998, 27(2): 87-94.
Ir-TPA 对 4 种 NACs 的检测机理为电荷转移机理。 [10] DI L, ZHANG J J, LIU S Q, et al. Two dynamic ABW-type metal
2+
organic frameworks built of pentacarboxylate and Zn as
photoluminescent probes of nitroaromatics[J]. Crystal Growth &
Design, 2016, 16(8): 4539-4546.
[11] SINHA W, RAVOTTO L, CERONI P, et al. NIR-emissive iridium
(Ⅲ) corrole complexes as efficient singlet oxygen sensitizers[J].
Dalton Transactions, 2015, 44(40): 17767-17773.
[12] LI M, ZHENG B Z, LUO D B, et al. Small molecular neutral
microcrystalline iridium (Ⅲ) complexes as promising molecular
oxygen sensors[J]. Chemical Communications, 2015, 51(10): 1926-1929.
[13] MAGGIONI D, GALLI M, D’ALFONSO L, et al. A luminescent
poly (amidoamine)-iridium complex as a new singlet-oxygen sensitizer
for photodynamic therapy[J]. Inorganic Chemistry, 2015, 54(2): 544-553.
[14] DI L, XING Y, WANG X N, et al. The influence of molecular
structure on collision radius for optical sensing of molecular oxygen
based on cyclometalated Ir(Ⅲ) complexes[J]. RSC Advances, 2018,
8(71): 41040-41047.
[15] XING Y, QIAO C F, LI X M, et al. The dependence of oxygen
sensitivity on molecular structures of Ir(Ⅲ) complexes and application
图 7 NACs 的吸收光谱与 Ir-TPA 的发射光谱 for photostable and reversible luminescent oxygen sensing[J]. RSC
Advances, 2019, 9(27): 15370-15380.
Fig. 7 Absorption spectra of NACs and emission spectra [16] XU W J, ZHAO X, LV W, et al. Rational design of phosphorescent
of Ir-TPA chemodosimeter for reaction-based one-and two-photon and time-
resolved luminescent imaging of biothiols in living cells[J]. Advanced
Healthcare Materials, 2014, 3(5): 658-669.
3 结论 [17] ROMMEL S A, SORSCHE D, RAU S. A supramolecular H-bond
driven light switch sensor for small anions[J]. Dalton Transactions,
2016, 45(1): 74-77.
将三苯胺基团引入环金属配体 2-苯基吡啶,再 [18] ZHENG Z, LI D Y, LIU Z Y, et al. Aggregation-induced nonlinear
optical effects of AIEgen nanocrystals for ultradeep in vivo
经两步法合成了三苯胺修饰的铱(Ⅲ)配合物 bioimaging[J]. Advanced Materials, 2019, 31(44): 1904799.
[19] HUANG L T, LI S W, LING X, et al. Dual detection of
2+
Ir-TPA。将 Ir-TPA 作为发光探针用于检测 NACs bioaccumulated Hg based on luminescent bacteria and aggregation-
induced emission[J]. Chemical Communications, 2019, 55(52):
(4-NT、1,3-DNB、3-NBA 及 3-NPM),并明确了检 7458-7461
[20] LI N Q, FANG Y Y, LI L, et al. A universal solution-processable
测机理。(1)Ir-TPA 对 3-NBA 具有最高的检测效率, bipolar host based on triphenylamine and pyridine for efficient
K SV 达 (6.18±0.10) L/mmol ,检测限为 1.12× phosphorescent and thermally activated delayed fluorescence OLEDs[J].
Journal of Luminescence, 2018, 199: 465-474.
–5
10 mol/L。(2)Ir-TPA 对 4-NT、1,3-DNB、3-NBA [21] AGARWALA P, KABRA D. A review on triphenylamine (TPA)
based organic hole transport materials (HTMs) for dye sensitized
及 3-NPM 的检测机理为电荷转移机理。本研究为实 solar cells (DSSCs) and perovskite solar cells (PSCs): Evolution and
molecular engineering[J]. Journal of Materials Chemistry A, 2017,
现 NACs 的高效、快速检测提供了理论支持及实验 5(4): 1348-1373.
[22] SOMAN S, PRADHAN S C, YOOSUF M, et al. Probing recombination
设计参考,后续研究将围绕铱(Ⅲ)配合物对环境 mechanism and realization of marcus normal region behavior in
水体中 NACs 的发光检测开展工作。 dsscs employing cobalt electrolytes and triphenylamine dyes[J]. The
Journal of Physical Chemistry C, 2018, 122(25): 14113-14127.
[23] YU H C, LIU C, YU Z N, et al. Effect of ancillary ligands on the
参考文献: properties of diphenylphosphoryl-substituted cationic Ir(Ⅲ) complexes[J].
Journal of Materials Chemistry C, 2017, 5(14): 3519-3527.
[1] LI S, ZHANG D H, LIU J L, et al. Electrochemiluminescence on [24] XING Y, LIU C, SONG X L, et al. Photostable trifluoromethyl-
smartphone with silica nanopores membrane modified electrodes for substituted platinum( Ⅱ ) emitters for continuous monitoring of
nitroaromatic explosives detection[J]. Biosensors and Bioelectronics, molecular oxygen[J]. Journal of Materials Chemistry C, 2015, 3(10):
2019, 129: 284-291. 2166-2174.
[2] WEN L L, HOU X G, SHAN G G, et al. Rational molecular design [25] XING Y, LIU C, XIU J H, et al. Photostable fluorophenyl-substituted
of aggregation-induced emission cationic Ir(Ⅲ) phosphors achieving cyclometalated platinum(Ⅱ) emitters for monitoring of molecular
supersensitive and selective detection of nitroaromatic explosives[J]. oxygen in real time[J]. Inorganic Chemistry, 2015, 54(16): 7783-7790.
Journal of Materials Chemistry C, 2017, 5(41): 10847-10854. [26] WANG X D, WOLFBEIS O S. Optical methods for sensing and
[3] LIU J W, XU Y N, QIN C Y, et al. Simple fluorene oxadiazole-based imaging oxygen: Materials, spectroscopies and applications[J]. Chemical
Ir(Ⅲ) complexes with AIPE properties: Synthesis, explosive detection Society Reviews, 2014, 43(10): 3666-3761.
and electroluminescence studies[J]. Dalton Transactions, 2019, 48(35): [27] RAZI S S, KOO Y H, KIM W, et al. Ping-pong energy transfer in a
13305-13314. boron dipyrromethane containing Pt(Ⅱ)-schiff base complex: Synthesis,
[4] HE H M, CHEN S H, ZHANG D Y, et al. A luminescent photophysical studies, and anti-stokes shift increase in triplet-triplet
metal-organic framework as an ideal chemosensor for nitroaromatic annihilation upconversion[J]. Inorganic Chemistry, 2018, 57(9):
compounds[J]. RSC Advances, 2017, 7(62): 38871-38876. 4877-4890.
[5] CHE W L, LI G F, LIU X M, et al. Selective sensing of [28] HASEBE N, DEGUCHI Y, MURAYAMA S, et al. Phosphorescence
2,4,6-trinitrophenol (TNP) in aqueous media with “aggregation- quenching of neutral and cationic iridium( Ⅲ ) complexes by
induced emission enhancement” (AIEE)-active iridium(Ⅲ) complexes[J]. molecular oxygen and aromatic electron acceptors[J]. Journal of
Chemical Communications, 2018, 54(14): 1730-1733. Photochemistry and Photobiology A: Chemistry, 2016, 324: 134-144.
[6] ALAM P, KAUR G, KACHWAL V, et al. Highly sensitive explosive [29] YU H C, LIU C, LV X, et al. Effect of substituents on properties of
sensing by “aggregation induced phosphorescence” active cyclometalated diphenylphosphoryl-substituted bis-cyclometalated Ir(Ⅲ) complexes
iridium(Ⅲ) complexes[J]. Journal of Materials Chemistry C, 2015, with a picolinic acid as ancillary ligand[J]. Dyes and Pigments, 2017,
3(21): 5450-5456. 145: 136-143.
[7] HÅKANSSON K, COOREY R V, ZUBAREV R A, et al. Low-mass [30] DAI Y, ZHOU H J, SONG X D, et al. Two (5,5)-connected isomeric
ions observed in plasma desorption mass spectrometry of high frameworks as highly selective and sensitive photoluminescent
explosives[J]. Journal of Mass Spectrometry, 2000, 35(3): 337-346. probes of nitroaromatics[J]. CrystEngComm, 2017, 19(20): 2786-2794.