Page 131 - 《精细化工》2020年第7期
P. 131

第 7 期              狄   玲,等:  含三苯胺铱(Ⅲ)配合物对硝基芳香化合物的高效发光检测                                 ·1413·


            量转移作用      [30] 。图 7 为 Ir-TPA 的发射光谱及 4 种           [8]   SYLVIA J M, JANNI J A, KLEIN J, et al. Surface-enhanced Raman
                                                                   detection of 2, 4-dinitrotoluene impurity vapor as a marker to locate
            NACs 的吸收光谱。如图 7 所示,Ir-TPA 的发射光                         landmines[J]. Analytical Chemistry, 2000, 72(23): 5834-5840.
                                                               [9]   LUGGAR R, FARQUHARSON M, HORROCKS J, et al. Multivariate
            谱与 4 种 NACs 的吸收光谱无交叠。因此,Ir-TPA                         analysis  of  statistically  poor  EDXRD  spectra  for  the  detection  of
                                                                   concealed  explosives[J].  X-Ray  Spectrometry:  An  International
            与 4 种 NACs 之间无共振能量转移作用,综上,                             Journal, 1998, 27(2): 87-94.
            Ir-TPA 对 4 种 NACs 的检测机理为电荷转移机理。                    [10]  DI L, ZHANG J J, LIU S Q, et al. Two dynamic ABW-type metal
                                                                                                         2+
                                                                   organic  frameworks  built  of  pentacarboxylate  and  Zn  as
                                                                   photoluminescent  probes  of  nitroaromatics[J].  Crystal  Growth  &
                                                                   Design, 2016, 16(8): 4539-4546.
                                                               [11]  SINHA W, RAVOTTO L, CERONI  P, et al. NIR-emissive iridium
                                                                   (Ⅲ)  corrole  complexes  as  efficient  singlet  oxygen  sensitizers[J].
                                                                   Dalton Transactions, 2015, 44(40): 17767-17773.
                                                               [12]  LI  M,  ZHENG  B  Z,  LUO  D  B, et al.  Small  molecular  neutral
                                                                   microcrystalline  iridium  (Ⅲ)  complexes  as  promising  molecular
                                                                   oxygen sensors[J]. Chemical Communications, 2015, 51(10): 1926-1929.
                                                               [13]  MAGGIONI  D,  GALLI  M,  D’ALFONSO  L, et al.  A  luminescent
                                                                   poly (amidoamine)-iridium complex as a new singlet-oxygen sensitizer
                                                                   for photodynamic therapy[J]. Inorganic Chemistry, 2015, 54(2): 544-553.
                                                               [14]  DI  L,  XING  Y,  WANG  X  N, et  al.  The  influence  of  molecular
                                                                   structure on collision radius for optical sensing of molecular oxygen
                                                                   based on cyclometalated Ir(Ⅲ) complexes[J]. RSC Advances, 2018,
                                                                   8(71): 41040-41047.
                                                               [15]  XING  Y,  QIAO  C  F,  LI  X  M, et  al.  The  dependence  of  oxygen
                                                                   sensitivity on molecular structures of Ir(Ⅲ) complexes and application

                 图 7    NACs 的吸收光谱与 Ir-TPA 的发射光谱                   for photostable and reversible luminescent oxygen sensing[J]. RSC
                                                                   Advances, 2019, 9(27): 15370-15380.
            Fig.  7    Absorption  spectra  of  NACs  and  emission  spectra   [16]  XU W J, ZHAO X, LV W, et al. Rational design of phosphorescent
                   of Ir-TPA                                       chemodosimeter  for  reaction-based  one-and  two-photon  and  time-
                                                                   resolved  luminescent  imaging  of  biothiols  in  living  cells[J].  Advanced
                                                                   Healthcare Materials, 2014, 3(5): 658-669.
            3   结论                                             [17]  ROMMEL  S  A,  SORSCHE  D,  RAU  S.  A  supramolecular  H-bond
                                                                   driven light switch sensor for small anions[J]. Dalton Transactions,
                                                                   2016, 45(1): 74-77.
                 将三苯胺基团引入环金属配体 2-苯基吡啶,再                        [18]  ZHENG Z, LI D Y, LIU Z Y, et al. Aggregation-induced nonlinear
                                                                   optical  effects  of  AIEgen  nanocrystals  for  ultradeep  in vivo
            经两步法合成了三苯胺修饰的铱(Ⅲ)配合物                                   bioimaging[J]. Advanced Materials, 2019, 31(44): 1904799.
                                                               [19]  HUANG  L  T,  LI  S  W,  LING  X, et al.  Dual  detection  of
                                                                               2+
            Ir-TPA。将 Ir-TPA 作为发光探针用于检测 NACs                        bioaccumulated Hg  based on luminescent bacteria and aggregation-
                                                                   induced  emission[J].  Chemical  Communications,  2019,  55(52):
            (4-NT、1,3-DNB、3-NBA 及 3-NPM),并明确了检                     7458-7461
                                                               [20]  LI  N  Q,  FANG  Y  Y,  LI  L, et al.  A  universal  solution-processable
            测机理。(1)Ir-TPA 对 3-NBA 具有最高的检测效率,                       bipolar  host  based  on  triphenylamine  and  pyridine  for  efficient
            K SV 达 (6.18±0.10)  L/mmol ,检测限为 1.12×                 phosphorescent and thermally activated delayed fluorescence OLEDs[J].
                                                                   Journal of Luminescence, 2018, 199: 465-474.
              –5
            10  mol/L。(2)Ir-TPA 对 4-NT、1,3-DNB、3-NBA           [21]  AGARWALA  P,  KABRA  D.  A  review  on  triphenylamine  (TPA)
                                                                   based  organic  hole  transport  materials  (HTMs)  for  dye  sensitized
            及 3-NPM 的检测机理为电荷转移机理。本研究为实                             solar cells (DSSCs) and perovskite solar cells (PSCs): Evolution and
                                                                   molecular  engineering[J].  Journal  of  Materials  Chemistry  A,  2017,
            现 NACs 的高效、快速检测提供了理论支持及实验                              5(4): 1348-1373.
                                                               [22]  SOMAN S, PRADHAN S C, YOOSUF M, et al. Probing recombination
            设计参考,后续研究将围绕铱(Ⅲ)配合物对环境                                 mechanism  and  realization  of  marcus  normal  region  behavior  in
            水体中 NACs 的发光检测开展工作。                                    dsscs employing cobalt electrolytes and triphenylamine dyes[J]. The
                                                                   Journal of Physical Chemistry C, 2018, 122(25): 14113-14127.
                                                               [23]  YU H C, LIU C, YU Z N, et al. Effect of ancillary ligands on the
            参考文献:                                                  properties of diphenylphosphoryl-substituted cationic Ir(Ⅲ) complexes[J].
                                                                   Journal of Materials Chemistry C, 2017, 5(14): 3519-3527.
            [1]   LI  S,  ZHANG  D  H,  LIU  J  L, et al.  Electrochemiluminescence  on   [24]  XING  Y,  LIU  C,  SONG  X  L, et  al.  Photostable  trifluoromethyl-
                 smartphone with silica nanopores membrane modified electrodes for   substituted  platinum( Ⅱ )  emitters  for  continuous  monitoring  of
                 nitroaromatic explosives detection[J]. Biosensors and Bioelectronics,   molecular oxygen[J]. Journal of Materials Chemistry C, 2015, 3(10):
                 2019, 129: 284-291.                               2166-2174.
            [2]   WEN L L, HOU X G, SHAN G G, et al. Rational molecular design   [25]  XING Y, LIU C, XIU J H, et al. Photostable fluorophenyl-substituted
                 of aggregation-induced emission cationic Ir(Ⅲ) phosphors achieving   cyclometalated  platinum(Ⅱ)  emitters  for  monitoring  of  molecular
                 supersensitive and selective detection of nitroaromatic explosives[J].   oxygen in real time[J]. Inorganic Chemistry, 2015, 54(16): 7783-7790.
                 Journal of Materials Chemistry C, 2017, 5(41): 10847-10854.   [26]  WANG  X  D,  WOLFBEIS  O  S.  Optical  methods  for  sensing  and
            [3]   LIU J W, XU Y N, QIN C Y, et al. Simple fluorene oxadiazole-based   imaging oxygen: Materials, spectroscopies and applications[J]. Chemical
                 Ir(Ⅲ) complexes with AIPE properties: Synthesis, explosive detection   Society Reviews, 2014, 43(10): 3666-3761.
                 and electroluminescence studies[J]. Dalton Transactions, 2019, 48(35):   [27]  RAZI S S, KOO Y H, KIM W, et al. Ping-pong energy transfer in a
                 13305-13314.                                      boron dipyrromethane containing Pt(Ⅱ)-schiff base complex: Synthesis,
            [4]   HE H M,  CHEN S H,  ZHANG  D Y, et al.  A  luminescent   photophysical studies, and anti-stokes shift increase in triplet-triplet
                 metal-organic framework as an ideal chemosensor for nitroaromatic   annihilation  upconversion[J].  Inorganic  Chemistry,  2018,  57(9):
                 compounds[J]. RSC Advances, 2017, 7(62): 38871-38876.   4877-4890.
            [5]   CHE  W  L, LI  G  F, LIU X M, et al.  Selective  sensing  of   [28]  HASEBE N, DEGUCHI Y, MURAYAMA S, et al. Phosphorescence
                 2,4,6-trinitrophenol  (TNP)  in  aqueous  media  with  “aggregation-   quenching  of  neutral  and  cationic  iridium( Ⅲ )  complexes  by
                 induced emission enhancement” (AIEE)-active iridium(Ⅲ) complexes[J].   molecular  oxygen  and  aromatic  electron  acceptors[J].  Journal  of
                 Chemical Communications, 2018, 54(14): 1730-1733.   Photochemistry and Photobiology A: Chemistry, 2016, 324: 134-144.
            [6]   ALAM P, KAUR G, KACHWAL V, et al. Highly sensitive explosive   [29]  YU H C, LIU C, LV X, et al. Effect of substituents on properties of
                 sensing by “aggregation induced phosphorescence” active cyclometalated   diphenylphosphoryl-substituted bis-cyclometalated Ir(Ⅲ) complexes
                 iridium(Ⅲ)  complexes[J].  Journal  of  Materials  Chemistry  C,  2015,   with a picolinic acid as ancillary ligand[J]. Dyes and Pigments, 2017,
                 3(21): 5450-5456.                                 145: 136-143.
            [7]   HÅKANSSON K, COOREY R V, ZUBAREV R A, et al. Low-mass   [30]  DAI Y, ZHOU H J, SONG X D, et al. Two (5,5)-connected isomeric
                 ions  observed  in  plasma  desorption  mass  spectrometry  of  high   frameworks  as  highly  selective  and  sensitive  photoluminescent
                 explosives[J]. Journal of Mass Spectrometry, 2000, 35(3): 337-346.   probes of nitroaromatics[J]. CrystEngComm, 2017, 19(20): 2786-2794.
   126   127   128   129   130   131   132   133   134   135   136