Page 132 - 《精细化工》2020年第9期
P. 132
·1846· 精细化工 FINE CHEMICALS 第 37 卷
性,利于实现对 CO 2 、Togni′s ReagentⅡ的固定和活 under ambient conditions[J]. ACS Catalysis, 2018, 8(1): 419-450.
[4] SZE N D, KO M K W. Carbon disulfide and carbonyl sulfide in the
化作用。在 DBU 的脱质子作用下,烯丙基胺底物与 stratospheric sulfur budget[J]. Nature, 1979, 280(5720): 308-310.
孔道内 CO 2 加成得到氨基甲酸酯中间体 B。如中间 [5] SMITH G V, BARTÓK M, NOTHEISZ F, et al. Determination of
active sites on palladium by carbon disulfide titration[J]. Journal of
态物质 C 所示,Togni′s Reagent Ⅱ被铜节点吸附、 Catalysis, 1988, 110(1): 203-205.
[6] FURUYA T, KAMLET A S, RITTER T. Catalysis for fluorination
活化,使碘中心带有部分正电荷;铜节点可能将一 and trifluoromethylation[J]. Nature, 2011, 473(7348): 470-477.
个电子转移给锚定的 Togni′s Reagent Ⅱ,使其发生 [7] YE J H, SONG L, ZHOU W J, et al. Selective
oxytrifluoromethylation of allylamines with CO 2[J]. Angewandte
I—CF 3 键均裂,并将三氟甲基自由基加成到邻近底 Chemie International Edition, 2016, 55(34): 10022-10026.
物 1a 的烯烃片段,生成碳中心自由基中间态 D;接 [8] DRAKE T, JI P, LIN W. Site isolation in metal-organic frameworks
enables novel transition metal catalysis[J]. Accounts of Chemical
下来,自由基中间态 D 经过与铜节点的氧化还原过 Research, 2018, 51(9): 2129-2138.
程使铜中心恢复初始价态,同时如中间态 E 所示, [9] LIAN X, FANG Y, JOSEPH E, et al. Enzyme-MOF (metal-organic
framework) composites[J]. Chemical Society Reviews, 2017, 46(11):
发生环合得到吸附于孔道内的最终产物。随后,通 3386-3401.
[10] CUI Y J, LI B, HE H J, et al. Metal-organic frameworks as platforms
过外来底物、CO 2 、Togni′s ReagentⅡ的竞争性配位 for functional materials[J]. Accounts of Chemical Research, 2016,
作用,产物 2a 发生脱附,游离出孔道,反应进入下 49(3): 483-493.
[11] WANG C, LIU D M, LIN W B. Metal-organic frameworks as a
一个催化循环。 tunable platform for designing functional molecular materials[J].
Journal of the American Chemical Society, 2013, 135(36): 13222-
13234.
3 结论 [12] LIU J W, CHEN L F, CUI H, et al. Applications of metal-organic
frameworks in heterogeneous supramolecular catalysis[J]. Chemical
(1)实现了利用晶态铜基 MOF 材料 HKUST-1 Society Reviews, 2014, 43(16): 6011-6061.
[13] CHUI S, LO S, CHARMANT J, et al. A chemically functionalizable
作为非均相催化剂,催化烯丙基胺类底物与三氟甲 nanoporous material [Cu 3(TMA) 2(H 2O) 3] n[J]. Science, 1999,
基前体 Togni′s Reagent Ⅱ常压下的 CO 2 反应,制得 283(5405): 1148-1150.
[14] FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The
药物功能性杂环分子 2-三氟甲基-唑烷酮衍生物。 chemistry and applications of metal-organic frameworks[J]. Science,
(2)条件优化及控制实验确定了适用于烯丙基 2013, 341(6149): 1230444.
[15] QI B, ZHANG T X, LI M C, et al. Highly shape- and regio-selective
胺类底物的最优反应条件;探索了具有不同取代基 peroxy-trifluoromethylation of styrene by metal-organic framework
Cu 3(BTC) 2[J]. Catalysis Science & Technology, 2017, 7(24): 5872-5881.
团底物的适用范围,底物中与烯烃相连的苯基上的 [16] KAWAMURA S, EGAMI H, SODEOKA M. Aminotrifluoromethylation
吸电子基团能够提高反应转化率,而给电子效应则 of olefins via cyclic amine formation: Mechanistic study and
application to synthesis of trifluoromethylated pyrrolidines[J].
会降低反应活性,即使底物烯烃附近具有较大的空 Journal of the American Chemical Society, 2015, 137(14): 4865-4873.
间位阻基团,反应仍具有良好的效果。相较于传统 [17] KENDA B, TURET L, QUESNEL L, et al. New heterocyclic
derivatives useful for the treatment of CNS disorders:
的催化合成路径,该反应使用更低的催化剂负载量, WO2008132139 [P]. 2008-11-06.
[18] TOVAR T M, ZHAO J J, NUNN W T, et al. Diffusion of CO 2 in
且非均相催化剂 HKUST-1 使用后可回收,经 4 次循
large crystals of Cu-BTC MOF[J]. Journal of the American Chemical
环使用依然具有良好的催化效果、并保持晶态结构, Society, 2016, 138: 11449-11452.
[19] MENG Q Y, SCHIRMER T E, KATOU K, et al. Controllable
证实了晶态 HKUST-1 材料良好的结构稳定性。 isomerization of alkenes by dual visible-light-cobalt catalysis[J].
(3)HKUST-1 良好的孔隙率有利于反应的传质 Angewandte Chemie International Edition, 2019, 58(17): 5723-5728.
[20] DONG X, HAN Y, YAN F C, et al. Palladium-catalyzed 6-endo
过程,具有路易斯酸性空配位的铜节点作为 MOF selective alkyl-heck reactions: Access to 5-phenyl-1,2,3,6-
材料的催化活性中心,利于 CO 2 、Togni′s Reagent Ⅱ tetrahydropyridine derivatives[J]. Organic Letters, 2016, 18(15):
3774-3777.
等的锚定、活化,反应物之间的空间隔离也有助于 [21] BARLUENGA J, FAÑANAS F J, SANZ R, et al. 2-Arylallyl as a
实现不同反应步骤的区位化,避免无效碰撞、减少 new protecting group for amines, amides and alcohols[J]. Chemical
Communications, 2005, 7: 933-935.
副反应,体现了非均相催化体系的优势。 [22] YAMANAKA H, MATSUO J-I, KAWANA A, et al. New methods
for the preparations of 2-arylaziridines, α-imidostyrenes, and
(4)当采用 CS 2 作为碳源时,用一步法合成出 allylamines from olefins via diphenylvinylsulfonium triflates[J].
具有调节中枢神经系统功能的药物分子衍生物,显 Arkivoc, 2003, (Ⅲ): 42-65.
[23] VEERANNA K D, DAS K K, BASKARAN S. One-pot synthesis of
示出 HKUST-1 对硫毒化作用的耐受性,克服了传统 cyclopropane-fused cyclic amidines: An oxidative carbanion
金属盐均相催化体系的不足,进一步揭示了该非均 cyclization[J]. Angewandte Chemie International Edition, 2017,
56(51): 16197-16201.
相催化体系的工业应用潜力。 [24] YU D G (余达刚), YE J H (叶剑衡), YAN S S (颜思顺), et al.
Fluorine-containing heterocyclic compound and preparation method:
参考文献: CN106220581[P]. 2016-12-14.
[25] SCHAFER L, ROSCA S-C, DIPUCCHIO R, et al. Group 5 metal
[1] MÜLLER K, FAEH C, DIEDERICH F. Fluorine in pharmaceuticals: complexes for catalytic amine functionalization: WO2018213938
Looking beyond intuition[J]. Science, 2007, 317(5846): 1881-1886. [P]. 2018-11-29.
[2] SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbon [26] WANG F, WANG D H, MU X, et al. Copper-catalyzed
dioxide[J]. Chemical Reviews, 2007, 107(6): 2365-2387. intermolecular trifluoromethylarylation of alkenes: Mutual activation
+
[3] SHAIKH R R, PORNPRAPROM S, D′ELIA V. Catalytic strategies of arylboronic acid and CF 3 reagent[J]. Journal of the American
for the cycloaddition of pure, diluted, and waste CO 2 to epoxides Chemical Society, 2014, 136(29): 10202-10205.