Page 84 - 《精细化工》2020年第9期
P. 84

·1798·                            精细化工   FINE CHEMICALS                                 第 37 卷

            且优于牡荆提取物合成的 Nano ZnO 的抑菌活性                         [18]  YAMAMOTO O.  Influence of particle size on the antibacterial
                                                                   activity of zinc oxide[J]. International Journal of Inorganic Materials,
            (MIC=1.32 g/L)。                                        2001, 3(7): 643-646.
                (4)使用藤茶黄酮制备出具有良好抗氧化与抗                          [19]  TANG S H, LI R, TAN J, et al. One pot synthesis of water-soluble
                                                                   quercetin derived  multifunctional nanoparticles with photothermal
            菌活性的 Nano ZnO 圆形颗粒,有利于推动 Nano                          and antioxidation capabilities[J]. Colloids and Surfaces B: Biointerfaces,
            ZnO 在农业、食品以及医疗安全领域的应用。                                 2019, 183: 110429.
                                                               [20]  HU C C, LU L, ZHU Y J, et al. Morphological controlled preparation
                                                                   and photocatalytic activity of zinc oxide[J]. Materials Chemistry and
            参考文献:                                                  Physics, 2018, 217: 182-191.
            [1]   SONG W T, ANSELMO A  C, HUANG  L. Nanotechnology   [21]  NIELS H, KAJ-ÅGE  H, WANG H S,  et al. Formation of
                 intervention of the  microbiome for cancer therapy[J]. Nature   Pseudomonas aeruginosa inhibition zone during tobramycin disk
                 Nanotechnology, 2019, 14(12): 1093-1103.          diffusion is due to transition from planktonic to biofilm mode of
            [2]   MISHRA P K, MISHRA H,  EKIELSKI A,  et al. Zinc oxide   growth[J]. International Journal of Antimicrobial Agents, 2019, 53:
                 nanoparticles: A promising nanomaterial for biomedical applications[J].   564-573.
                 Drug Discovery Today, 2017, 22(12): 1825-1834.     [22]  WANG L H, WEN Q H, ZENG X A, et al. Influence of naringenin
            [3]   MIRZAEI H, DARROUDI M. Zinc oxide nanoparticles: Biological   adaptation and shock on resistance of  Staphylococcus aureus and
                 synthesis and biomedical applications[J]. Ceramics International,   Escherichia coli to pulsed electric fields[J]. LWT - Food Science and
                 2017, 43(1): 907-914.                             Technology, 2019, 107: 308-317.
            [4]   RASMUSSEN J W, MARTINEZ  E,  LOUKA P,  et al. Zinc  oxide   [23]  ZABIHI E, BABAEI A, SHAHRAMPOUR D, et al. Facile and rapid
                 nanoparticles for selective destruction of tumor cells and potential for   in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical
                 drug delivery applications[J]. Expert Opinion on Drug Delivery,   purposes; A novel combination of biomineralization, ultrasound, and
                 2010, 7(9): 1063-1077.                            bio-safe morphology-conducting agent[J]. International Journal of
            [5]   SHARMA H, MISHRA P K, TALEGAONKAR S,  et al. Metal   Biological Macromolecules, 2019, 131: 107-116.
                 nanoparticles: A theranostic nanotool againstcancer[J]. Drug Discovery   [24]  HE D L (何登良), TANG Z X  (谭自香), TIAN  Q (田奇).
                 Today, 2015, 20: 1143-1151.                       Characterization, photocatalytic property and kinetics of ZnO
            [6]   SHARMA  H, KUMAR K, CHOUDHARY C,  et al. Development   nanoparticles synthesized by one step solid state reaction[J]. Chinese
                 and characterization of metal oxide nanoparticles for the delivery of   Journal of Inorganic Chemistry (无机化学学报), 2017, 33(6): 1065-
                 anticancer drug[J]. Artificial Cells, Nanomedicine, and Biotechnology,   1073.
                 2014, 44(2): 672-679.                         [25]  JAMDAGNI P, KHATRI P, RANA J S. Green synthesis of zinc oxide
            [7]   HANLEY C, LAYNE J, PUNNOOSE A, et al. Preferential killing of   nanoparticles using flower extract of  Nyctanthes arbor-tristis and
                 cancer cells and activated human T cells using ZnO nanoparticles[J].   their antifungal activity[J]. Journal of King Saud University-Science,
                 Nanotechnology, 2008, 19(29): 295103.             2018, 30(2): 168-175.
            [8]   AWAD A, ZAGLOOL A W, AHMED S A A, et al. Transcriptomic   [26]  GUO Q Q, YUAN J, ZENG J H, et al. Synthesis of dihydromyricetin-
                 profile change, immunological response and disease resistance of   manganese (Ⅱ) complex and interaction with DNA[J]. Journal of
                 Oreochromis niloticus fed with conventional and nano-zinc oxide   Molecular Structure, 2012, 1027: 64-69.
                 dietary supplements[J]. Fish & Shellfish Immunology,  2019, 93:   [27]  KATOUAH H A,  AL-FAHEMI J H, ELGHALBAN M G,  et al.
                 336-343.                                          Synthesis of  new Cu (Ⅱ)-benzohydrazide nanometer complexes,
            [9]   WANG J, WANG A L, WANG W X. Evaluation of nano-ZnO as a   spectral, modeling, CT-DNA binding with potential antiinflammatory
                 novel Zn source for marine fish: Importance of digestive physiology[J].   and anti-allergic theoretical features[J]. Materials Science & Engineering
                 Nanotoxicology, 2017, 11(8): 1026-1039.           C, 2019, 96: 740-756.
            [10]  MURALISANKAR T, BHAVAN P S, RADHAKRISHNAN S, et al.   [28]  SU B T (苏碧桃),  HU C L (胡常林), ZUO X W (左显维),  et al.
                 Dietary supplementation of zinc nanoparticles and its influence on   Preparation of ZnO nanoparticles and their catalytic property under
                 biology, physiology and immune responses of the freshwater prawn,   solar light[J]. Chinese Journal of Inorganic Chemistry (无机化学学
                 Macrobrachium rosenbergii[J]. Biological Trace Element Research,   报), 2010, 26(1): 96-100.
                 2014, 160(1): 56-66.                          [29]  DARROUDI M, HAKIMI M, SARANI M,  et al. Facile synthesis,
            [11]  AHMED S, ANNU, CHAUDHRY S A, et al. A review on biogenic   characterization, and evaluation of neurotoxicity effect of cerium
                 synthesis of ZnO nanoparticles using plant extracts and microbes: A   oxide nanoparticles[J]. Ceramics International, 2013, 39(6): 6917-6921.
                 prospect towards green chemistry[J].  Journal of Photochemistry &   [30]  CHEN  C C,  LIU J F, LIU P,  et al.  Investigation of photocatalytic
                 Photobiology, B: Biology, 2017, 166: 272-284.     degradation of methyl orange by using nano-sized ZnO catalysts[J].
            [12]  KARNAN  T, SELVAKUMAR S  A S. Biosynthesis of ZnO   Advances in Chemical Engineering and Science, 2011, 1: 9-14.
                 nanoparticles using rambutan (Nephelium lappaceum L.) peel extract   [31]  CHANDRA M N, MAHENDRA C, YASHAVANTHA R H C, et al.
                 and their photocatalytic activity on methyl orange dye[J]. Journal of   Hydrothermal combustion based ZnO nanoparticles from  Croton
                 Molecular Structure, 2016, 1125: 358-365.         bonplandianum: Characterization and evaluation of antibacterial and
            [13]  DARROUDI M, SABOURI Z, KAZEMI OSKUEE R, et al. Green   antioxidant potential[J]. Sustainable Chemistry and Pharmacy, 2019,
                 chemistry approach for the synthesis of ZnO nanopowders and their   14: 100186.
                 cytotoxic effects[J]. Ceramics International, 2014, 40(3): 4827-4831.     [32]  SURESH D, UDAYABHANU, NETHRAVATHI P C,  et al. EGCG
            [14]  KHAN S A, NOREEN F, KANWAL S, et al. Green synthesis of ZnO   assisted green synthesis of ZnO nanopowders: Photodegradative,
                 and Cu-doped ZnO nanoparticles from leaf extracts of  Abutilon   antimicrobial and antioxidant activities[J]. Spectrochimica Acta Part
                 indicum, Clerodendrum infortunatum, Clerodendrum inerme and   A: Molecular and Biomolecular Spectroscopy, 2015, 136: 1467-1474.
                 investigation of their biological and photocatalytic  activities[J].   [33]  NETHRAVATHI P C, SHRUTHI G S, SURESH D, et al. Garcinia
                 Materials Science & Engineering C, 2018, 82: 46-59.     xanthochymus mediated green synthesis of ZnO nanoparticles:
            [15]  HUSSAIN I, SINGH N B, SINGH  A,  et al. Green synthesis of   Photoluminescence,  photocatalytic and antioxidant  activity studies[J].
                 nanoparticles and its potential application[J]. Biotechnology Letters,   Ceramics International, 2015, 41(7): 8680-8687.
                 2016, 38(4): 545-560.                         [34]  SURESH D, NETHRAVATHI P C,  UDAYABHANU,  et al. Green
            [16]  ZAK A  K, MAJID W H A, DARROUDI M,  et al. Synthesis and   synthesis of multifunctional zinc oxide (ZnO) nanoparticles using
                 characterization of ZnO  nanoparticles prepared  in gelatin  media[J].   Cassia fistula plantextract  and their  photodegradative, antioxidant
                 Materials Letters, 2011, 65(1): 70-73.            and antibacterial activities[J]. Materials Science in Semiconductor
            [17]  GUNALAN S, SIVARAJ R, RAJENDRAN V. Green synthesized   Processing, 2015, 31: 446-454.
                 ZnO nanoparticles against bacterial and fungal pathogens[J]. Progress
                 in Natural Science: Materials International, 2012, 22(6): 693-700.          (下转第 1832 页)
   79   80   81   82   83   84   85   86   87   88   89