Page 84 - 《精细化工》2020年第9期
P. 84
·1798· 精细化工 FINE CHEMICALS 第 37 卷
且优于牡荆提取物合成的 Nano ZnO 的抑菌活性 [18] YAMAMOTO O. Influence of particle size on the antibacterial
activity of zinc oxide[J]. International Journal of Inorganic Materials,
(MIC=1.32 g/L)。 2001, 3(7): 643-646.
(4)使用藤茶黄酮制备出具有良好抗氧化与抗 [19] TANG S H, LI R, TAN J, et al. One pot synthesis of water-soluble
quercetin derived multifunctional nanoparticles with photothermal
菌活性的 Nano ZnO 圆形颗粒,有利于推动 Nano and antioxidation capabilities[J]. Colloids and Surfaces B: Biointerfaces,
ZnO 在农业、食品以及医疗安全领域的应用。 2019, 183: 110429.
[20] HU C C, LU L, ZHU Y J, et al. Morphological controlled preparation
and photocatalytic activity of zinc oxide[J]. Materials Chemistry and
参考文献: Physics, 2018, 217: 182-191.
[1] SONG W T, ANSELMO A C, HUANG L. Nanotechnology [21] NIELS H, KAJ-ÅGE H, WANG H S, et al. Formation of
intervention of the microbiome for cancer therapy[J]. Nature Pseudomonas aeruginosa inhibition zone during tobramycin disk
Nanotechnology, 2019, 14(12): 1093-1103. diffusion is due to transition from planktonic to biofilm mode of
[2] MISHRA P K, MISHRA H, EKIELSKI A, et al. Zinc oxide growth[J]. International Journal of Antimicrobial Agents, 2019, 53:
nanoparticles: A promising nanomaterial for biomedical applications[J]. 564-573.
Drug Discovery Today, 2017, 22(12): 1825-1834. [22] WANG L H, WEN Q H, ZENG X A, et al. Influence of naringenin
[3] MIRZAEI H, DARROUDI M. Zinc oxide nanoparticles: Biological adaptation and shock on resistance of Staphylococcus aureus and
synthesis and biomedical applications[J]. Ceramics International, Escherichia coli to pulsed electric fields[J]. LWT - Food Science and
2017, 43(1): 907-914. Technology, 2019, 107: 308-317.
[4] RASMUSSEN J W, MARTINEZ E, LOUKA P, et al. Zinc oxide [23] ZABIHI E, BABAEI A, SHAHRAMPOUR D, et al. Facile and rapid
nanoparticles for selective destruction of tumor cells and potential for in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical
drug delivery applications[J]. Expert Opinion on Drug Delivery, purposes; A novel combination of biomineralization, ultrasound, and
2010, 7(9): 1063-1077. bio-safe morphology-conducting agent[J]. International Journal of
[5] SHARMA H, MISHRA P K, TALEGAONKAR S, et al. Metal Biological Macromolecules, 2019, 131: 107-116.
nanoparticles: A theranostic nanotool againstcancer[J]. Drug Discovery [24] HE D L (何登良), TANG Z X (谭自香), TIAN Q (田奇).
Today, 2015, 20: 1143-1151. Characterization, photocatalytic property and kinetics of ZnO
[6] SHARMA H, KUMAR K, CHOUDHARY C, et al. Development nanoparticles synthesized by one step solid state reaction[J]. Chinese
and characterization of metal oxide nanoparticles for the delivery of Journal of Inorganic Chemistry (无机化学学报), 2017, 33(6): 1065-
anticancer drug[J]. Artificial Cells, Nanomedicine, and Biotechnology, 1073.
2014, 44(2): 672-679. [25] JAMDAGNI P, KHATRI P, RANA J S. Green synthesis of zinc oxide
[7] HANLEY C, LAYNE J, PUNNOOSE A, et al. Preferential killing of nanoparticles using flower extract of Nyctanthes arbor-tristis and
cancer cells and activated human T cells using ZnO nanoparticles[J]. their antifungal activity[J]. Journal of King Saud University-Science,
Nanotechnology, 2008, 19(29): 295103. 2018, 30(2): 168-175.
[8] AWAD A, ZAGLOOL A W, AHMED S A A, et al. Transcriptomic [26] GUO Q Q, YUAN J, ZENG J H, et al. Synthesis of dihydromyricetin-
profile change, immunological response and disease resistance of manganese (Ⅱ) complex and interaction with DNA[J]. Journal of
Oreochromis niloticus fed with conventional and nano-zinc oxide Molecular Structure, 2012, 1027: 64-69.
dietary supplements[J]. Fish & Shellfish Immunology, 2019, 93: [27] KATOUAH H A, AL-FAHEMI J H, ELGHALBAN M G, et al.
336-343. Synthesis of new Cu (Ⅱ)-benzohydrazide nanometer complexes,
[9] WANG J, WANG A L, WANG W X. Evaluation of nano-ZnO as a spectral, modeling, CT-DNA binding with potential antiinflammatory
novel Zn source for marine fish: Importance of digestive physiology[J]. and anti-allergic theoretical features[J]. Materials Science & Engineering
Nanotoxicology, 2017, 11(8): 1026-1039. C, 2019, 96: 740-756.
[10] MURALISANKAR T, BHAVAN P S, RADHAKRISHNAN S, et al. [28] SU B T (苏碧桃), HU C L (胡常林), ZUO X W (左显维), et al.
Dietary supplementation of zinc nanoparticles and its influence on Preparation of ZnO nanoparticles and their catalytic property under
biology, physiology and immune responses of the freshwater prawn, solar light[J]. Chinese Journal of Inorganic Chemistry (无机化学学
Macrobrachium rosenbergii[J]. Biological Trace Element Research, 报), 2010, 26(1): 96-100.
2014, 160(1): 56-66. [29] DARROUDI M, HAKIMI M, SARANI M, et al. Facile synthesis,
[11] AHMED S, ANNU, CHAUDHRY S A, et al. A review on biogenic characterization, and evaluation of neurotoxicity effect of cerium
synthesis of ZnO nanoparticles using plant extracts and microbes: A oxide nanoparticles[J]. Ceramics International, 2013, 39(6): 6917-6921.
prospect towards green chemistry[J]. Journal of Photochemistry & [30] CHEN C C, LIU J F, LIU P, et al. Investigation of photocatalytic
Photobiology, B: Biology, 2017, 166: 272-284. degradation of methyl orange by using nano-sized ZnO catalysts[J].
[12] KARNAN T, SELVAKUMAR S A S. Biosynthesis of ZnO Advances in Chemical Engineering and Science, 2011, 1: 9-14.
nanoparticles using rambutan (Nephelium lappaceum L.) peel extract [31] CHANDRA M N, MAHENDRA C, YASHAVANTHA R H C, et al.
and their photocatalytic activity on methyl orange dye[J]. Journal of Hydrothermal combustion based ZnO nanoparticles from Croton
Molecular Structure, 2016, 1125: 358-365. bonplandianum: Characterization and evaluation of antibacterial and
[13] DARROUDI M, SABOURI Z, KAZEMI OSKUEE R, et al. Green antioxidant potential[J]. Sustainable Chemistry and Pharmacy, 2019,
chemistry approach for the synthesis of ZnO nanopowders and their 14: 100186.
cytotoxic effects[J]. Ceramics International, 2014, 40(3): 4827-4831. [32] SURESH D, UDAYABHANU, NETHRAVATHI P C, et al. EGCG
[14] KHAN S A, NOREEN F, KANWAL S, et al. Green synthesis of ZnO assisted green synthesis of ZnO nanopowders: Photodegradative,
and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon antimicrobial and antioxidant activities[J]. Spectrochimica Acta Part
indicum, Clerodendrum infortunatum, Clerodendrum inerme and A: Molecular and Biomolecular Spectroscopy, 2015, 136: 1467-1474.
investigation of their biological and photocatalytic activities[J]. [33] NETHRAVATHI P C, SHRUTHI G S, SURESH D, et al. Garcinia
Materials Science & Engineering C, 2018, 82: 46-59. xanthochymus mediated green synthesis of ZnO nanoparticles:
[15] HUSSAIN I, SINGH N B, SINGH A, et al. Green synthesis of Photoluminescence, photocatalytic and antioxidant activity studies[J].
nanoparticles and its potential application[J]. Biotechnology Letters, Ceramics International, 2015, 41(7): 8680-8687.
2016, 38(4): 545-560. [34] SURESH D, NETHRAVATHI P C, UDAYABHANU, et al. Green
[16] ZAK A K, MAJID W H A, DARROUDI M, et al. Synthesis and synthesis of multifunctional zinc oxide (ZnO) nanoparticles using
characterization of ZnO nanoparticles prepared in gelatin media[J]. Cassia fistula plantextract and their photodegradative, antioxidant
Materials Letters, 2011, 65(1): 70-73. and antibacterial activities[J]. Materials Science in Semiconductor
[17] GUNALAN S, SIVARAJ R, RAJENDRAN V. Green synthesized Processing, 2015, 31: 446-454.
ZnO nanoparticles against bacterial and fungal pathogens[J]. Progress
in Natural Science: Materials International, 2012, 22(6): 693-700. (下转第 1832 页)