Page 165 - 《精细化工》2021年第11期
P. 165
第 11 期 王 楠,等: 椰子油酰基芳香族氨基酸盐的绿色合成与性能评价 ·2311·
acids[J].Angewandte Chemie-International Edition, 1997, 36(13/14): oils[J]. Colloids and Surfaces A: Physicochemical and Engineering
1494-1496. Aspects, 2020, 592:124600.
[17] WANG F (王峰), ZHANG Z G (张兆国). Palladium-catalyzed [28] LIU C Y, WANG Y Z, CHAI C X, et al. Interfacial activities and
amidocarbonylation[J]. Chinese Journal of Organic Chemistry (有机 aggregation behaviors of N-acyl amino acid surfactants derived from
化学), 2002, 22(8): 536-542. vegetable oils[J]. Colloids and Surfaces A—Physicochemical and
[18] KANA M, TOSHIAHI S. Process for producing N-acylamino acid: Engineering Aspects, 2018, 559:54-59.
US20130116469 A1[P]. 2013-05-09. [29] BAJANI D, GHARAI D, DEY J. A comparison of the self-assembly
[19] HATTORI T, KITAMURA N, YAMATO N, et al. Method for behaviour of sodium N-lauroylsarcosinate and sodium N-lauroylglycinate
preparing N-long chain acyl neutral amino acid: US6703517B2[P]. surfactants in aqueous and aqueo-organic media[J]. Journal of
2004-03-09. Colloid and Interface Science, 2018, 529: 314-324.
[20] TAKEHARA M, YOSHIMURA I, TAKIZAWA K, et al. Surface-active [30] ZHANG D, SUN Y, DENG Q, et al. Study of the environmental
N-acylglutamate: Ⅰ Preparation of long-chain N-acylglutamicacid[J]. responsiveness of amino acid-based surfactant sodium lauroylglutamate
Journal of the American Oil Chemists Society,1972, 49(3): 157-161. and its foam characteristics[J]. Colloids and Surfaces A—Physicochemical
[21] LU D D (陆丹丹),YE Z W (叶志文). Synthesis of N-acyl amino acid and Engineering Aspects, 2016, 504:384-392.
surfactant[J]. China Surfactant Detergent&Cosmetics (日用化学工 [31] WANG N, YAO K X, WANG Y Z, et al. Green synthesis,
业), 2013, 43(1): 34-37. characterization, and properties of acyl lysine, serine, threonine, and
[22] WANG Z (汪钊), QIANG X H (强西怀), XIA Q Y (夏庆友), et al. methionine derived from three types of natural oils[J]. Journal of
Preparation technology of protein-based surfactant using waste Surfactants and Detergents, 2020, 23(2) : 239-250.
natural silk[J]. Science of Sericulture (蚕业科学), 2013, 39(4): [32] YANG S (杨珊), LI Y L (李雅丽). Experiment design on determination
778-782. of the liquid surface tension by Wilhelmy method[J]. Chinese Journal
[23] XU B C (徐宝财), LI D (李东), ZHANG H P (张慧萍), et al. Study of Chemical Education [化学教育(中英文)], 2018, 39(10): 44-48.
on the preparation of N-acylglutamic acid from fatty acid methyl [33] Shanghai Saponite Factory. Institute of Chemical Industry for Daily
ester [J]. Surfactant Industry (表面活性剂工业), 1994, (4): 43-45. Use. Ministry of Light Industry. Surface active agents-Measurement
[24] XU B C (徐宝财), ZHOU Y W (周雅文), ZHANG S Z (张世朝), of foaming power-Modified Ross-miles method: GB/T 7462—1994
et al. Preparation of N-fatty acyl amino acid surfactants from methyl [S]. Beijing: China Standard Press(中国标准出版社), 1994: 1-12.
esters: CN102311359[P]. 2012-01-11. [34] MAO P K (毛培坤). Industrial analysis of surfactant products[M].
[25] LIU Q (刘群), HU X Y (胡学一), FANG Y (方云). Synthesis of Beijing: Chemical Industry Press (化学工业出版社), 2002: 430-433.
Sodium N-lauroylglycinate from methyl laurate and sodium glycinate [35] National Quality Supervision and Inspection Center for Washing
in glycerol[J]. Fine Chemicals (精细化工), 2016, 33 (7):768-771. Products (Taiyuan). China Institute of Chemical Industry for Daily
[26] WANG C, ZHANG P P, CHEN Z H, et al. Effects of fatty acyl chains Use. Determination of detergency and cycle of washing property for
on the interfacial rheological behaviors of amino acid surfactants[J]. laundry detergents:GB/T 13174—2008[S]. Beijing: China Standard
Journal of Molecular Liquids, 2021, (325). DOI: 10.1016/j.molliq. Press(中国标准出版社), 2008: 1-28.
2020.114823. [36] ZHANG G J, CHAI C X, TAN T T, et al. Green synthesis and surface
[27] CHEN Z H, ZHANG P P, LIU Y, et al. Interfacial rheological properties of acyl glycine surfactants derived from vegetable oils[J].
behavior of N-acyl amino acid surfactants derived from vegetable Tenside Surfactants Detergents, 2016, 53(3): 284-290.
(上接第 2304 页) [22] ZHU Z F, YAN Y, LI J Q. One-step synthesis of flower-like
heterojunction with enhanced visible light
[13] GUO Q F, ZHAO X Q, LI Z Y, et al. A novel solid-state WO 3/Bi 2WO 6
electrochromic supercapacitor with high energy storage capacity and photocatalytic activity[J]. Journal of Materials Science, 2016, 51(4):
cycle stability based on poly (5-formylindole)/WO 3 honeycombed 2112-2120.
porous nanocomposites[J]. Chemical Engineering Journal, 2020, 384: [23] LI J Q, HAO H J, ZHOU J, et al. g-C 3N 4 modified flower-like
1-41. WO 3-Bi 2WO 6 microspheres with enhanced photoelectrocatalytic
[14] LINDGREN T, WANG H L, BEERMANN N, et al. Aqueous activity[J]. New Journal of Chemistry, 2016, 40(11): 9638-9647.
photoelectrochemistry of hematite nanorod array[J]. Solar Energy [24] CHEN X, LI Y X, LI L. Facet-engineered surface and interface
Materials and Solar Cells, 2002, 71(2): 231-243. design of WO 3/Bi 2WO 6 photocatalyst with direct Z-scheme
[15] WANG L, WANG R Y, ZHOU Y, et al. Three-dimensional heterojunction for efficient salicylic acid removal[J]. Applied Surface
Bi 2MoO 6/TiO 2 array heterojunction photoanode modified with cobalt Science, 2020, 508(C). DOI: 10.1016/j.apsusc. 2019.144796.
phosphate cocatalyst for high-efficient photoelectrochemical water [25] YIN P, CHEN Q G, WANG D, et al. Synthesis of one-dimensional
oxidation[J]. Catalysis Today, 2019, 335: 262-268. WO 3-Bi 2WO 6 heterojunctions with enhanced photocatalytic
[16] HAN H S, SHIN S, KIM D H, et al. Boosting the solar water activity[J]. CrystEngComm, 2015, 17(3): 569-576.
oxidation performance of a BiVO 4 photoanode by crystallographic [26] FENG R, WANG Q Y, LU Q F, et al. Rational fabrication of
orientation control[J]. Energy & Environmental Science, 2018, 11(5): hierarchical Z-scheme WO 3/Bi 2WO 6 nanotubes for superior
1299-1306. photoelectrocatalytic reaction[J]. Chemistry Select, 2019, 4(9):
[17] WANG S C, HE T W, YUN J H, et al. New iron-cobalt oxide 2676-2684.
catalysts promoting BiVO 4 films for photoelectrochemical water [27] LIU S W, YU J G. Cooperative self-construction and enhanced
splitting[J]. Advanced Functional Materials, 2018, 28(34). DOI: optical absorption of nanoplates-assembled hierarchical Bi 2WO 6
10.1002/adfm.201802685. flowers[J]. Journal of Solid State Chemistry, 2008, 181(5): 1048-
[18] KIM J H, LEE J S. Elaborately modified BiVO 4 photoanodes for 1055.
solar water splitting[J]. Advanced Materials, 2019, 31(20): 1806938- [28] HUANG Y (黄毅), SHEN Y (申玥), WU J H (吴季怀), et al.
1806951. Preparation and performance study of flower-like Bi 2WO 6
[19] LI B S, LAI C, ZENG G M, et al. Facile hydrothermal synthesis of photocatalyst[J]. Functional Materials (功能材料), 2010, 41(S1):
Z-scheme Bi 2Fe 4O 9/Bi 2WO 6 heterojunction photocatalyst with 52-56.
enhanced visible light photocatalytic activity[J]. ACS Applied [29] HUANG Y, WU J H, HUANG M L, et al. Influence of surfactants on
Materials & Interfaces, 2018, 10(22): 18824-18836. the morphology and photocatalytic activity of Bi 2WO 6 by
[20] ZHU Z L, REN Y L, LI Q, et al. One-pot electrodeposition synthesis hydrothermal synthesis[J]. Science China Chemistry, 2011, 54(1):
of Bi 2WO 6/graphene composites for photocatalytic applications 210-215.
under visible light irradiation[J]. Ceramics International, 2018, 44(3): [30] WANG Q Y, LU Q F, WEI M Z, et al. ZnO/γ-Bi 2MoO 6
3511-3516. heterostructured nanotubes: Electrospinning fabrication and highly
[21] ZHANG X J, YU S, LIU Y, et al. Photoreduction of non-noble metal enhanced photoelectrocatalytic properties under visible-light
Bi on the surface of Bi 2WO 6 for enhanced visible light irradiation[J]. Journal of Sol-Gel Science and Technology, 2018,
photocatalysis[J]. Applied Surface Science, 2017, 396: 652-658. 85(1): 84-92.