Page 165 - 《精细化工》2021年第11期
P. 165

第 11 期                 王   楠,等:  椰子油酰基芳香族氨基酸盐的绿色合成与性能评价                                 ·2311·


                 acids[J].Angewandte Chemie-International Edition, 1997, 36(13/14):   oils[J]. Colloids and Surfaces A: Physicochemical  and Engineering
                 1494-1496.                                        Aspects, 2020, 592:124600.
            [17]  WANG F (王峰), ZHANG Z G (张兆国). Palladium-catalyzed   [28]  LIU C Y, WANG Y Z,  CHAI C X,  et al. Interfacial activities and
                 amidocarbonylation[J]. Chinese Journal of Organic Chemistry (有机  aggregation behaviors of N-acyl amino acid surfactants derived from
                 化学), 2002, 22(8): 536-542.                        vegetable oils[J].  Colloids and  Surfaces A—Physicochemical and
            [18]  KANA M, TOSHIAHI S. Process for producing N-acylamino acid:   Engineering Aspects, 2018, 559:54-59.
                 US20130116469 A1[P]. 2013-05-09.              [29]  BAJANI D, GHARAI D, DEY J. A comparison of the self-assembly
            [19]  HATTORI T,  KITAMURA  N, YAMATO N,  et al. Method  for   behaviour of sodium N-lauroylsarcosinate and sodium N-lauroylglycinate
                 preparing N-long chain acyl neutral amino acid: US6703517B2[P].   surfactants in aqueous and aqueo-organic media[J]. Journal of
                 2004-03-09.                                       Colloid and Interface Science, 2018, 529: 314-324.
            [20]  TAKEHARA M, YOSHIMURA I, TAKIZAWA K, et al. Surface-active   [30]  ZHANG D, SUN  Y, DENG Q,  et al. Study of the environmental
                 N-acylglutamate:  Ⅰ  Preparation of long-chain N-acylglutamicacid[J].   responsiveness of amino acid-based surfactant sodium lauroylglutamate
                 Journal of the American Oil Chemists Society,1972, 49(3): 157-161.   and its foam characteristics[J]. Colloids and Surfaces A—Physicochemical
            [21]  LU D D (陆丹丹),YE Z W (叶志文). Synthesis of N-acyl amino acid   and Engineering Aspects, 2016, 504:384-392.
                 surfactant[J]. China Surfactant Detergent&Cosmetics (日用化学工  [31]  WANG N, YAO  K X,  WANG Y  Z,  et al. Green synthesis,
                 业), 2013, 43(1): 34-37.                           characterization, and properties of acyl lysine, serine, threonine, and
            [22]  WANG Z (汪钊), QIANG X H (强西怀), XIA Q Y (夏庆友), et al.   methionine derived from three types  of natural oils[J]. Journal of
                 Preparation technology of protein-based surfactant using waste   Surfactants and Detergents, 2020, 23(2) : 239-250.
                 natural silk[J]. Science of Sericulture (蚕业科学), 2013, 39(4):   [32]  YANG S (杨珊), LI Y L (李雅丽). Experiment design on determination
                 778-782.                                          of the liquid surface tension by Wilhelmy method[J]. Chinese Journal
            [23]  XU B C (徐宝财), LI D (李东), ZHANG H P (张慧萍), et al. Study   of Chemical Education [化学教育(中英文)], 2018, 39(10): 44-48.
                 on the preparation of  N-acylglutamic acid from fatty acid methyl   [33]  Shanghai Saponite Factory. Institute of Chemical Industry for Daily
                 ester [J]. Surfactant Industry (表面活性剂工业), 1994, (4): 43-45.   Use. Ministry of Light Industry. Surface active agents-Measurement
            [24]  XU B  C (徐宝财), ZHOU Y W (周雅文), ZHANG S Z (张世朝),   of foaming power-Modified Ross-miles method: GB/T 7462—1994
                 et al. Preparation of N-fatty acyl amino acid surfactants from methyl   [S]. Beijing: China Standard Press(中国标准出版社), 1994: 1-12.
                 esters: CN102311359[P]. 2012-01-11.           [34]  MAO P K (毛培坤). Industrial analysis of surfactant products[M].
            [25]  LIU Q (刘群), HU X Y (胡学一), FANG  Y (方云). Synthesis of   Beijing: Chemical Industry Press (化学工业出版社), 2002: 430-433.
                 Sodium N-lauroylglycinate from methyl laurate and sodium glycinate   [35]  National Quality Supervision and Inspection Center for Washing
                 in glycerol[J]. Fine Chemicals (精细化工), 2016, 33 (7):768-771.   Products (Taiyuan). China Institute of Chemical Industry for Daily
            [26]  WANG C, ZHANG P P, CHEN Z H, et al. Effects of fatty acyl chains   Use. Determination of detergency and cycle of washing property for
                 on the interfacial rheological behaviors of amino acid surfactants[J].   laundry detergents:GB/T 13174—2008[S]. Beijing: China Standard
                 Journal of Molecular Liquids, 2021, (325). DOI: 10.1016/j.molliq.   Press(中国标准出版社), 2008: 1-28.
                 2020.114823.                                  [36]  ZHANG G J, CHAI C X, TAN T T, et al. Green synthesis and surface
            [27]  CHEN Z H, ZHANG P P, LIU Y,  et al. Interfacial rheological   properties of acyl glycine surfactants derived from vegetable oils[J].
                 behavior of  N-acyl amino acid surfactants derived  from vegetable   Tenside Surfactants Detergents, 2016, 53(3): 284-290.


            (上接第 2304 页)                                       [22]  ZHU Z F, YAN Y, LI J Q. One-step synthesis of flower-like
                                                                             heterojunction  with  enhanced  visible  light
            [13]  GUO Q  F, ZHAO  X Q, LI  Z  Y,  et al.  A novel solid-state   WO 3/Bi 2WO 6
                 electrochromic supercapacitor with high energy storage capacity and   photocatalytic activity[J]. Journal of Materials Science, 2016, 51(4):
                 cycle stability based on poly (5-formylindole)/WO 3 honeycombed   2112-2120.
                 porous nanocomposites[J]. Chemical Engineering Journal, 2020, 384:   [23]  LI J Q,  HAO H J, ZHOU J,  et al.  g-C 3N 4 modified flower-like
                 1-41.                                             WO 3-Bi 2WO 6 microspheres with enhanced photoelectrocatalytic
            [14]  LINDGREN T, WANG H L, BEERMANN N,  et al.  Aqueous   activity[J]. New Journal of Chemistry, 2016, 40(11): 9638-9647.
                 photoelectrochemistry of hematite nanorod array[J]. Solar Energy   [24]  CHEN X, LI Y X, LI L. Facet-engineered surface and interface
                 Materials and Solar Cells, 2002, 71(2): 231-243.     design of  WO 3/Bi 2WO 6 photocatalyst with direct  Z-scheme
            [15]  WANG L,  WANG R  Y, ZHOU Y,  et al.  Three-dimensional   heterojunction for efficient salicylic acid removal[J]. Applied Surface
                 Bi 2MoO 6/TiO 2 array heterojunction photoanode modified with cobalt   Science, 2020, 508(C). DOI: 10.1016/j.apsusc. 2019.144796.
                 phosphate cocatalyst for high-efficient photoelectrochemical water   [25]  YIN P, CHEN Q G, WANG D, et al. Synthesis of one-dimensional
                 oxidation[J]. Catalysis Today, 2019, 335: 262-268.     WO 3-Bi 2WO 6  heterojunctions with enhanced photocatalytic
            [16]  HAN H S, SHIN  S, KIM D H,  et al.  Boosting the solar water   activity[J]. CrystEngComm, 2015, 17(3): 569-576.
                 oxidation performance of a BiVO 4 photoanode by crystallographic   [26]  FENG R, WANG Q Y,  LU Q F,  et al.  Rational fabrication of
                 orientation control[J]. Energy & Environmental Science, 2018, 11(5):   hierarchical  Z-scheme WO 3/Bi 2WO 6 nanotubes for superior
                 1299-1306.                                        photoelectrocatalytic reaction[J]. Chemistry Select, 2019, 4(9):
            [17]  WANG S C, HE  T W,  YUN J H,  et al.  New iron-cobalt oxide   2676-2684.
                 catalysts promoting BiVO 4 films for photoelectrochemical water   [27]  LIU S  W,  YU J G. Cooperative self-construction  and  enhanced
                 splitting[J]. Advanced Functional Materials, 2018, 28(34). DOI:   optical absorption of nanoplates-assembled hierarchical Bi 2WO 6
                 10.1002/adfm.201802685.                           flowers[J]. Journal of Solid State Chemistry, 2008, 181(5): 1048-
            [18]  KIM J H, LEE J  S. Elaborately  modified BiVO 4 photoanodes for   1055.
                 solar water splitting[J]. Advanced Materials, 2019, 31(20): 1806938-   [28] HUANG  Y  (黄毅), SHEN  Y (申玥),  WU J H (吴季怀),  et al.
                 1806951.                                          Preparation and  performance study of flower-like Bi 2WO 6
            [19]  LI B S, LAI C, ZENG G M, et al. Facile hydrothermal synthesis of   photocatalyst[J]. Functional Materials (功能材料), 2010, 41(S1):
                 Z-scheme Bi 2Fe 4O 9/Bi 2WO 6 heterojunction photocatalyst with   52-56.
                 enhanced  visible light photocatalytic  activity[J]. ACS Applied   [29]  HUANG Y, WU J H, HUANG M L, et al. Influence of surfactants on
                 Materials & Interfaces, 2018, 10(22): 18824-18836.     the  morphology and photocatalytic activity of Bi 2WO 6 by
            [20]  ZHU Z L, REN Y L, LI Q, et al. One-pot electrodeposition synthesis   hydrothermal synthesis[J]. Science  China Chemistry, 2011, 54(1):
                 of Bi 2WO 6/graphene composites for photocatalytic applications   210-215.
                 under visible light irradiation[J]. Ceramics International, 2018, 44(3):   [30]  WANG Q  Y,  LU Q F, WEI M Z,  et al.  ZnO/γ-Bi 2MoO 6
                 3511-3516.                                        heterostructured nanotubes: Electrospinning fabrication and highly
            [21]  ZHANG X J, YU S, LIU Y, et al. Photoreduction of non-noble metal   enhanced photoelectrocatalytic properties under visible-light
                 Bi on the surface of Bi 2WO 6  for enhanced visible light   irradiation[J]. Journal of  Sol-Gel Science and Technology, 2018,
                 photocatalysis[J]. Applied Surface Science, 2017, 396: 652-658.     85(1): 84-92.
   160   161   162   163   164   165   166   167   168   169   170