Page 168 - 《精细化工》2021年第12期
P. 168
·2530· 精细化工 FINE CHEMICALS 第 38 卷
在 CO-NO 反应中,由于 CO 的还原能力比活性 [7] WANG B, CAI H R, SHEN S H. Single atom catalysts[J]. Small
Method, 2019, 3(9): 1800447.
炭强,同时非均相反应较均相反应更容易进行,因
[8] FENG B (冯波), WU P (武鹏), LI Y L (李永龙). In situ XRD
此,CO 更容易转移 Fe(O)上的活性氧,同时也抑制 analysis of reduction mechanism of Fe 2O 3[J]. Natural Gas Chemical
0
了炭材料的消耗。在 Fe 的催化下,CO 也可以直接 Industry (天然气化工), 2021, 46(1): 66-68.
[9] LI X C, WANG H R, SHAO G G, et al. Low temperature reduction
还原部分被氧化的 Fe 3 O 4 ,释放更多的活性位点,有 of NO by activated carbons impregnated with Fe based catalysts[J].
效地提升了催化剂寿命。 International Journal of Hydrogen Energy, 2019, 46: 25265-25275.
Fe(O) CO CO 2 Fe (9) [10] Standardization Administration of the People's Republic of China.
Pulps-determination of ash: GB/T 742—1989[S]. Beijing: China
Fe O 3 4 CO CO 2 Fe (10) Standard Press (中国标准出版社), 1989: 152-153.
[11] American Society for Testing and Materials. Standard test method for
3 结论 volatile matter in the analysis of particulate wood fuels: ASTM
E872—1982[S]. New Mexico: Standards Press of American, 2006:
1-3.
本文采用浸渍法,以 H 2 作为还原剂制备出一系 [12] WANG H R, LI X C, ZHU M M, et al. Preparation and evaluation of
0
列负载在活性炭载体上以纳米级零价铁作为活性组 catalysts of highly dispersed zerovalent iron (Fe ) supported on
activated carbon for NO reduction[J]. Fuel, 2021, 303: 121252.
分的催化剂,研究了催化剂的制备条件(H 2 体积分
[13] ZHANG X, LIN S, CHEN Z L, et al. Kaolinite-supported nanoscale
数,煅烧温度及时间)对催化剂的分散性以及催化 zero-valent iron for removal of Pb from aqueous solution:
2+
还原 NO 活性的影响。结果表明,纳米级零价铁催 Reactivity, characterization and mechanism[J]. Water Research,
2011, 45(11): 3481-3488.
化剂具有较高的催化还原 NO 活性。随着催化剂制 [14] ZHANG S M, ZHANG H Y, ZHANG W M, et al. Induced growth of
备过程中 H 2 体积分数的增加,催化剂分散性变化较 Fe-N x active sites using carbon templates[J]. Chinese Journal of
Catalysis, 2018, 39: 1427-1435.
小,但催化剂的活性逐渐增强。随着催化剂制备还
[15] THOMAS J. Catalysis: Tens of thousands of atoms replaced by
原温度的升高,催化剂的分散性逐渐减弱,催化剂 one[J]. Nature, 2015, 525: 325-326.
的活性呈现出先增加后降低的趋势。随着催化剂制 [16] CHENG X X, ZHENG X Y, SU S X, et al. NO reduction by CO over
copper catalyst supported on mixed CeO 2 and Fe 2O 3: Catalyst design
备还原时间的增加,催化剂的分散性及活性逐渐增
and activity test[J]. Applied Catalysis B: Environmental, 2018, 239:
0
强。当反应温度为 325 ℃,Fe /BAC-100%H 2 -700(3) 481-501.
催化剂催化还原 NO 活性可以达到 100%。反应过程 [17] WANG H R, LI X C, MENG F R, et al. Preparation and evaluation
of iron nanoparticles embedded CNTs grown on ZSM-5 as catalysts
0
0
中,Fe 逐渐被氧化生成 Fe 3 O 4 ,活性组分 Fe 含量 for NO decomposition[J]. Chemical Engineering Journal, 2020, 392:
降低致使催化剂失活,失活后的催化剂经再生处 123798.
[18] CHEN X J, WANG Y T, HU X M, et al. Novel process of NO
理后可以恢复活性。还原 NO 过程中 CO 的加入可以
removal from simulated flue gas using a Fe/Gr periodically reversing
有效的地抑制载体碳材料的消耗,同时也加快了活性 electro-activated peroxymonosulfate system[J]. Separation and
氧的转移,减缓了催化剂失活速率,延长了催化剂活 Purification Technology, 2020, 253: 117389.
[19] XIAO J B, XU Q X, XU Q, et al. Direct promotion effect of Fe on no
性,为零价铁基催化剂在实际应用提供了可能。 reduction by activated carbon loaded with Fe species[J]. The Journal
of Chemical Thermodynamics, 2016, 95: 216-230.
参考文献: [20] WANG C L, GU X K, YAN H, et al. Water-Mediated Mars-Van
Krevelen mechanism for CO oxidation on ceria-supported
[1] LIU X G (刘晓刚), FEI H T (费浩天), LIU Y Q (刘奕绮), et al.
Denitrification performance of Cu(x)/TiO 2 catalysts for selective single-atom Pt catalyst[J]. ACS Catalysis, 2017, 7(1): 887-891.
catalytic reduction of NO with NH 3 at low temperature[J]. Fine [21] LI Y (李燕), HUANG J (黄军), LIN F W (林法伟), et al. Study on
Chemicals (精细化工), 2019, 36(9): 1825-1849. the activity and mechanism of selective catalytic reduction of NO
[2] SHELEF M, OTTO K, GANDHI H, et al. The oxidation of CO by with NH 3 over Mn αTi (1-α) catalyst at medium low temperatures[J].
O 2 and by NO on supported chromium oxide and other metal oxide Journal of Fuel Chemistry and Technology (燃料化学学报), 2020,
catalysts[J]. Journal of Catalysis, 1968, 12(4): 361-375. 48 (1): 91-99.
[3] WANG X Y, LI X Y, MU J C, et al. Facile design of highly effective [22] WU X M, YU X L, HUANG Z W, et al. MnO x-decorated VO x/CeO 2
CuCe xCo 1−xO y catalysts with diverse surface/interface structures catalysts with preferentially exposed {110} facets for selective
toward NO reduction by CO at low temperatures[J]. Industrial & catalytic reduction of NO x by NH 3[J]. Applied Catalysis B:
Engineering Chemistry Research, 2019, 58: 15459-15469. Environmental, 2020, 268: 118419-118433.
[4] WANG J Q (王佳琦), PANG H W (庞宏伟), TANG H (唐昊), et al. [23] AMIN N, MARYAM H, MEHRNIA M, et al. Employing magnetism
Carbothermic synthesis of carbon-supported zero-valent iron material of Fe 3O 4 and hydrophilicity of ZrO 2 to mitigate biofouling in
for removal of U(Ⅵ) from aqueous solution[J]. Journal of Inorganic magnetic MBR by Fe 3O 4-coated ZrO 2/PAN nanocomposite
Materials (无机材料学报), 2020, 35(3): 378-380. membrane[J]. Environmental Technology, 2020, 41(20): 2683-2704.
[5] LI Y Y (李艳鹰), LI X C (李先春). Biomass activated carbon loaded [24] RODBEY F, TANYA V, LUKYANUV D, et al. Formation of reactive
with zero-valent iron nanocrystal clusters fordirect catalytic reduction Lewis acid sites on Fe/WO 3-ZrO 2 catalysts for higher temperature
of NO[J]. CIESC Journal (化工学报), 2019, 70(3): 1111-1119. SCR applications[J]. Applied Catalysis B: Environmental, 2015, 162:
[6] LI A L (李艾霖), LI Y Y (李艳鹰). Denitration experiment of flue 174-179.
gas with Fe/Fe 3C catalyst supported by sawdust porous carbon in low [25] BRUIN M, KUNDIG E. A new chiral ligand for the Fe-Lewis acid
temperature oxygen free condition[J]. Energy for Metallurgical catalysed asymmetric Diels-Alder reaction[J]. Chemical
Industry (冶金能源), 2019, 38(1): 59-64. Communications, 1998, 23: 2635-2636.