Page 85 - 《精细化工》2021年第12期
P. 85
第 12 期 王洪亮,等: 生物质转化制备乳酸及其酯类物质研究进展 ·2447·
显着提升产品价值。 of lignocellulosic materials as substrates for fermentation processes[J].
中国作为一个农业和人口大国,农业废弃物资 Molecules, 2018, 23(11): 2937.
[15] DUARTE C L, RIBEIRO M A, OIKAWA H, et al. Electron beam
源丰富,每年的产量也因农业生产力的不断提高呈 combined with hydrothermal treatment for enhancing the enzymatic
显著增长趋势。随着世界能源危机和一系列环境问 convertibility of sugarcane bagasse[J]. Radiation Physics and
题的加剧,利用生物质制备高附加值平台化合物的 Chemistry, 2012, 81(8): 1008-1011.
[16] HERNANDEZ E, GARCIA A, LOPEZ M, et al. Dilute sulphuric
研究日益受到人们的重视,将其高效高值转化不仅
acid pretreatment and enzymatic hydrolysis of Moringa oleifera
能够实现变废为宝,更能减轻农业面源污染。利用 empty pods[J]. Industrial Crops & Products, 2013, 44: 227-231.
生物质原料制备乳酸符合绿色发展的理念,对推动 [17] PIRES J R A, SOUZA V G L, FERNANDO A L. Valorization of
energy crops as a source for nanocellulose production-current knowledge
碳减排及乡村振兴具有重要意义。
and future prospects[J]. Indudtrial Crops and Products, 2019, 140:
111642.
参考文献:
[18] FENG J (冯杰). Biochemical characterization of hemicellulose
[1] WANG A J (王安建), GAO X R (高芯蕊). China's energy and degradation enzyme from Caldicellulosiruptor sp. F32 and screening
important mineral resources demand perspective[J]. Bulletin of the of ligninolytic bacteria[D]. Qingdao: Qingdao University (青岛大
Chinese Academy of Sciences (中国科学院院刊), 2020, 35(3): 学), 2019.
338-344. [19] TANG P L, ABDUL P M, ENGLIMAN N S, et al. Effects of
[2] ZHOU L K (周立坤), GE Q F (葛庆峰), TENG H K (滕厚开). pretreatment and enzyme cocktail composition on the sugars
Progress in preparation of biobased compounds from energy plant production from oil palm empty fruit bunch fiber (OPEFBF)[J].
Jerusalem artichoke[J]. Chemical Industry and Engineering Progress Cellulose, 2018, 25(8): 4677-4694.
(化工进展), 2020, 39(7): 2612-2623. [20] SUN J D (孙家夺), WU B (吴斌), HE B F (何冰芳). Production of
[3] LI X X, ZHANG L L, WANG S S, et al. Recent advances in D-lactic acid from agricultural wastes by Sporolactobacillus sp.
aqueous-phase catalytic conversions of biomass platform chemicals YBS1-5[J]. Chinese Journal of Bioprocess Engineering (生物加工过
over heterogeneous catalysts[J]. Frontiers in Chemistry, 2020, 7: 948. 程), 2019, 17(2): 202-206.
[4] LI S, DENG W P, LI Y Y, et al. Catalytic conversion of [21] WANG Y, TASHIRO Y, SONOMOTO K. Fermentative production
cellulose-based biomass and glycerol to lactic acid[J]. Journal of of lactic acid from renewable materials: Recent achievements,
Energy Chemistry, 2019, 32(5): 138-151. prospects, and limits[J]. Journal of Bioscience and Bioengineering,
[5] DIAO X Q (刁晓倩), WENG Y X (翁云宣), SONG X Y (宋鑫宇), 2015, 119(1): 10-18.
et al. Current development situation of biodegradable plastic industry [22] ZHANG Y X, YOSHIDA M, VADLANI P V. Biosynthesis of
in China and abroad[J]. China Plastics, 2020, 34(5): 123-135. D-lactic acid from lignocellulosic biomass[J]. Biotechnology Letters,
[6] SUN Q M (孙启梅), QIAO K (乔凯), WANG L M (王领民), et al. 2018, 40(8): 1167-1179.
Advances in separation and purification of lactic acid from [23] ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO K. Lactic
fermentation broths[J]. Chemical Industry and Engineering Progress acid production from lignocellulose-derived sugars using lactic acid
(化工进展), 2016, 35(9): 2656-2662. bacteria: Overview and limits[J]. Journal of Biotechnology, 2011,
[7] OLIVEIRA R A, KOMESU A, VAZ ROSSEL C E, et al. Challenges 156(4): 286-301.
and opportunities in lactic acid bioprocess design—From economic [24] GHAFFAR T, IRSHAD M, ANWAR Z, et al. Recent trends in lactic
to production aspects[J]. Biochemical Engineering Journal, 2018, acid biotechnology: A brief review on production to purification[J].
133: 219-239. Journal of Radiation Research and Applied Sciences, 2014, 7(2):
[8] ES I, KHANEGHAH A M, BARBA F J, et al. Recent advancements 222-229.
in lactic acid production—A review[J]. Food Research International, [25] TARRARAN L, MAZZOLI R. Alternative strategies for lignocellulose
2018, 107: 763-770. fermentation through lactic acid bacteria: The state of the art and
[9] XU S G, WU Y, LI J M, et al. Directing the simultaneous conversion perspectives[J]. Fems Microbiology Letters, 2018, 365(15): 1-14.
of hemicellulose and cellulose in raw biomass to lactic acid[J]. ACS [26] BURGÉ G, SAULOU-BÉRION C, MOUSSA M, et al. Relationships
Sustainable Chemistry & Engineering, 2020, 8(10): 4244-4255. between the use of Embden Meyerhof pathway (EMP) or
[10] MAZZOLI R. Metabolic engineering strategies for consolidated phosphoketolase pathway (PKP) and lactate production capabilities
production of lactic acid from lignocellulosic biomass[J]. Biotechnology of diverse Lactobacillus reuteri strains[J]. Journal of Microbiology
and Applied Biochemistry, 2020, 67(1): 61-72. (Seoul, Korea), 2015, 53(10): 702-710.
[11] WANG Q Z (王庆昭), ZHENG Z B (郑宗宝), LIU Z H (刘子鹤), [27] WISCHRAL D, ARIAS J M, MODESTO L F, et al. Lactic acid
et al. The industrial processes and products of biorefineries[J]. Progress production from sugarcane bagasse hydrolysates by Lactobacillus
in Chemistry (化学进展), 2007, 26(Z2): 1198-1205. pentosus: Integrating xylose and glucose fermentation[J]. Biotechnology
[12] LI L Y (李陆杨), ZHU L F (朱林峰), QI X H (漆新华). Research Progress, 2019, 35(1): e2718.
progress of lactic acid production from biomass and its derived [28] COLA P, PROCOPIO D P, ALVES A T D C, et al. Differential
carbohydrates[J]. Journal of Agricultural Resources and Environment effects of major inhibitory compounds from sugarcane-based
(农业资源与环境学报), 2017, 34(4): 309-318. lignocellulosic hydrolysates on the physiology of yeast strains and
[13] AULITTO M, FUSCO S, NICKEL D B, et al. Seed culture lactic acid bacteria[J]. Biotechnology Letters, 2020, 42(24): 571-582.
pre-adaptation of Bacillus coagulans MA-13 improves lactic acid [29] ISHIDA N, SAITOH S, TOKUHIRO K, et al. Efficient production
production in simultaneous saccharification and fermentation[J]. of L-lactic acid by metabolically engineered Saccharomyces cerevisiae
Biotechnology for Biofuels, 2019, https://doi.org/10.1186/s13068- with a genome-integrated L-lactate dehydrogenase gene[J]. Applied
019-1382-2. and Environmental Microbiology, 2005, 71(4): 1964-1970.
[14] KUCHARSKA K, RYBARCZYK P, HOLOWACZ I, et al. Pretreatment [30] LIU D M (刘冬梅), ZHOU Q X (周全兴), ZHOU J S (周劲松).