Page 85 - 《精细化工》2021年第12期
P. 85

第 12 期                    王洪亮,等:  生物质转化制备乳酸及其酯类物质研究进展                                   ·2447·


            显着提升产品价值。                                              of lignocellulosic materials as substrates for fermentation processes[J].
                 中国作为一个农业和人口大国,农业废弃物资                              Molecules, 2018, 23(11): 2937.
                                                               [15]  DUARTE C L, RIBEIRO M A, OIKAWA H, et al. Electron beam
            源丰富,每年的产量也因农业生产力的不断提高呈                                 combined with hydrothermal treatment for enhancing the enzymatic
            显著增长趋势。随着世界能源危机和一系列环境问                                 convertibility of  sugarcane bagasse[J]. Radiation  Physics and
            题的加剧,利用生物质制备高附加值平台化合物的                                 Chemistry, 2012, 81(8): 1008-1011.
                                                               [16]  HERNANDEZ  E, GARCIA A, LOPEZ  M,  et al. Dilute sulphuric
            研究日益受到人们的重视,将其高效高值转化不仅
                                                                   acid pretreatment and enzymatic hydrolysis  of Moringa oleifera
            能够实现变废为宝,更能减轻农业面源污染。利用                                 empty pods[J]. Industrial Crops & Products, 2013, 44: 227-231.
            生物质原料制备乳酸符合绿色发展的理念,对推动                             [17]  PIRES J R A, SOUZA V G L, FERNANDO A L. Valorization of
                                                                   energy crops as a source for nanocellulose production-current knowledge
            碳减排及乡村振兴具有重要意义。
                                                                   and future prospects[J]. Indudtrial Crops and Products,  2019, 140:
                                                                   111642.
            参考文献:
                                                               [18]  FENG J (冯杰). Biochemical characterization of  hemicellulose
            [1]   WANG A J (王安建), GAO X R (高芯蕊). China's energy and   degradation enzyme from Caldicellulosiruptor sp. F32 and screening
                 important mineral resources demand perspective[J]. Bulletin of the   of ligninolytic bacteria[D].  Qingdao:  Qingdao University (青岛大
                 Chinese Academy  of Sciences (中国科学院院刊), 2020, 35(3):   学), 2019.
                 338-344.                                      [19]  TANG P L, ABDUL P M, ENGLIMAN N S,  et al. Effects of
            [2]   ZHOU L K (周立坤), GE Q F (葛庆峰), TENG  H K (滕厚开).   pretreatment and enzyme cocktail composition  on  the sugars
                 Progress in preparation of biobased compounds from energy plant   production from oil palm empty fruit bunch fiber (OPEFBF)[J].
                 Jerusalem artichoke[J]. Chemical Industry and Engineering Progress   Cellulose, 2018, 25(8): 4677-4694.
                 (化工进展), 2020, 39(7): 2612-2623.               [20]  SUN J D (孙家夺), WU B (吴斌), HE B F (何冰芳). Production of
            [3]   LI X X, ZHANG L L, WANG S  S,  et al. Recent advances in   D-lactic acid from agricultural wastes by  Sporolactobacillus sp.
                 aqueous-phase catalytic conversions of biomass platform chemicals   YBS1-5[J]. Chinese Journal of Bioprocess Engineering (生物加工过
                 over heterogeneous catalysts[J]. Frontiers in Chemistry, 2020, 7: 948.   程), 2019, 17(2): 202-206.
            [4]   LI S, DENG W P, LI Y Y,  et al. Catalytic conversion of   [21]  WANG Y, TASHIRO Y, SONOMOTO K. Fermentative production
                 cellulose-based biomass and glycerol to lactic  acid[J].  Journal of   of lactic acid from renewable  materials: Recent achievements,
                 Energy Chemistry, 2019, 32(5): 138-151.           prospects, and limits[J]. Journal of Bioscience  and Bioengineering,
            [5]   DIAO X Q (刁晓倩), WENG Y X (翁云宣), SONG X Y (宋鑫宇),   2015, 119(1): 10-18.
                 et al. Current development situation of biodegradable plastic industry   [22]  ZHANG Y X, YOSHIDA M, VADLANI P V.  Biosynthesis  of
                 in China and abroad[J]. China Plastics, 2020, 34(5): 123-135.   D-lactic acid from lignocellulosic biomass[J]. Biotechnology Letters,
            [6]   SUN Q M (孙启梅), QIAO K (乔凯), WANG L M (王领民), et al.   2018, 40(8): 1167-1179.
                 Advances in separation and  purification of lactic acid from   [23]  ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO  K. Lactic
                 fermentation broths[J]. Chemical Industry and Engineering Progress   acid production from lignocellulose-derived sugars using lactic acid
                 (化工进展), 2016, 35(9): 2656-2662.                   bacteria: Overview and limits[J]. Journal of Biotechnology, 2011,
            [7]   OLIVEIRA R A, KOMESU A, VAZ ROSSEL C E, et al. Challenges   156(4): 286-301.
                 and opportunities in lactic acid bioprocess design—From economic   [24]  GHAFFAR T, IRSHAD M, ANWAR Z, et al. Recent trends in lactic
                 to production aspects[J]. Biochemical Engineering Journal, 2018,   acid biotechnology: A brief review on production to purification[J].
                 133: 219-239.                                     Journal of Radiation Research and Applied Sciences, 2014, 7(2):
            [8]   ES I, KHANEGHAH A M, BARBA F J, et al. Recent advancements   222-229.
                 in lactic acid production—A review[J]. Food Research International,   [25]  TARRARAN L, MAZZOLI R. Alternative strategies for lignocellulose
                 2018, 107: 763-770.                               fermentation through lactic acid bacteria: The state of the art and
            [9]   XU S G, WU Y, LI J M, et al. Directing the simultaneous conversion   perspectives[J]. Fems Microbiology Letters, 2018, 365(15): 1-14.
                 of hemicellulose and cellulose in raw biomass to lactic acid[J]. ACS   [26]  BURGÉ G, SAULOU-BÉRION C, MOUSSA M, et al. Relationships
                 Sustainable Chemistry & Engineering, 2020, 8(10): 4244-4255.   between the use of Embden Meyerhof pathway (EMP) or
            [10]  MAZZOLI R. Metabolic engineering strategies for consolidated   phosphoketolase pathway (PKP) and lactate production capabilities
                 production of lactic acid from lignocellulosic biomass[J]. Biotechnology   of diverse Lactobacillus reuteri  strains[J]. Journal of Microbiology
                 and Applied Biochemistry, 2020, 67(1): 61-72.     (Seoul, Korea), 2015, 53(10): 702-710.
            [11]  WANG Q Z (王庆昭), ZHENG Z B (郑宗宝), LIU Z H (刘子鹤),   [27]  WISCHRAL  D, ARIAS J M, MODESTO L F,  et al. Lactic acid
                 et al. The industrial processes and products of biorefineries[J]. Progress   production  from sugarcane bagasse hydrolysates by  Lactobacillus
                 in Chemistry (化学进展), 2007, 26(Z2): 1198-1205.     pentosus: Integrating xylose and glucose fermentation[J]. Biotechnology
            [12]  LI L Y (李陆杨), ZHU L F (朱林峰), QI X H (漆新华). Research   Progress, 2019, 35(1): e2718.
                 progress  of lactic acid production from biomass  and its derived   [28]  COLA P, PROCOPIO D P, ALVES A T D C,  et al. Differential
                 carbohydrates[J]. Journal of Agricultural Resources and Environment   effects of  major inhibitory compounds from sugarcane-based
                 (农业资源与环境学报), 2017, 34(4): 309-318.                lignocellulosic hydrolysates on the physiology of yeast strains and
            [13]  AULITTO M, FUSCO S,  NICKEL D B,  et al. Seed culture   lactic acid bacteria[J]. Biotechnology Letters, 2020, 42(24): 571-582.
                 pre-adaptation of  Bacillus coagulans  MA-13 improves lactic  acid   [29]  ISHIDA N, SAITOH S, TOKUHIRO K, et al. Efficient production
                 production in simultaneous saccharification and fermentation[J].   of L-lactic acid by metabolically engineered Saccharomyces cerevisiae
                 Biotechnology for Biofuels, 2019, https://doi.org/10.1186/s13068-   with a genome-integrated L-lactate dehydrogenase gene[J]. Applied
                 019-1382-2.                                       and Environmental Microbiology, 2005, 71(4): 1964-1970.
            [14]  KUCHARSKA K, RYBARCZYK P, HOLOWACZ I, et al. Pretreatment   [30]  LIU D M (刘冬梅), ZHOU  Q X (周全兴), ZHOU J S  (周劲松).
   80   81   82   83   84   85   86   87   88   89   90