Page 86 - 《精细化工》2021年第12期
P. 86
·2448· 精细化工 FINE CHEMICALS 第 38 卷
Identification of a Bacillus coagulans and production of high optical fermentations[J]. Journal of Dairy Science, 2017, 100(7): 5188-5194.
purity L-lactic acid via synchronous saccharifying fermentation[J]. [46] JUTURU V, WU J C. Microbial production of lactic acid: The latest
Journal of South China University of Technology (Natural Science development[J]. Critical Reviews in Biotechnology, 2016, 36(6):
Edition) (华南理工大学学报: 自然科学版), 2017, 45(9): 81-87. 967-977.
[31] XIAO Y (肖雨). Research on mutagenesis breeding of Lactobacillus [47] LI Q Q (李青青). Studies on selection, physiological characteristics
bulgaricus and D-lactic acid production by simultaneous and application of an aeortolerant bifidobacterium[D]. Hangzhou:
saccharification of corn strover[D]. Changchun: Journal of Jilin Zhejiang University (浙江大学), 2010.
Agricultural University (吉林农业大学), 2019. [48] ZOTTA T, PARENTE E, RICCIARDI A. Aerobic metabolism in the
[32] COSTA S, SUMMA D, SEMERARO B, et al. Fermentation as a genus Lactobacillus: Impact on stress response and potential applications
strategy for bio-transforming waste into resources: Lactic acid in the food industry[J]. Journal of Applied Microbiology, 2017,
production from agri-food residues[J]. Fermentation, 2021, 7(1): 3. 122(4): 857-869.
[33] OLSZEWSKA-WIDDRAT A, ALEXANDRI M, LÓPEZ-GÓMEZ J [49] HAN X S, LI L, WEI C X, et al. Facilitation of L-lactic acid
P, et al. Batch and continuous lactic acid fermentation based on a fermentation by lignocellulose biomass rich in vitamin B
multi-substrate approach[J]. Microorganisms, 2020, 8(7): 1084. compounds[J]. Journal of Agricultural and Food Chemistry, 2019,
[34] BERLOWSKA J, CIECIURA W, BOROWSKI S, et al. Simultaneous 67(25): 7082-7086.
saccharification and fermentation of sugar beet pulp with mixed [50] LI F K (李伏坤), ZHANG J (张杰), XU C (徐畅), et al. Progress in
bacterial cultures for lactic acid and propylene glycol production[J]. chemical catalytic conversion of lignocellulose to lactic acid and its
Molecules, 2016, 21(10): 1380. esters[J]. Applied Chemical Industry (应用化工), 2019, 48(10):
[35] ALEXANDRI M, SCHNEIDER R, MEHLMANN K, et al. Recent 2440-2443.
advances in D-lactic acid production from renewable resources: Case [51] HOLM M S, SARAVANAMURUGAN S, TAARNING E. Conversion
studies on agro-industrial waste streams[J]. Food Technology and of sugars to lactic acid derivatives using heterogeneous zeotype
Biotechnology, 2019, 57(3): 293-304. catalysts[J]. Science, 2010, 328(5978): 602-605.
[36] HUANG G Y (黄光云), HE R C (何仁春), LUO X Q (罗鲜青), et al. [52] TALLARICO S, COSTANZO P, BONACCI S, et al. Combined
Study on the effects of different microbial addition combinations of ultrasound/microwave chemocatalytic method for selective conversion
mulberry branches and leaves silage[J]. China Cattle Science (中国 of cellulose into lactic acid[J]. Scientific Reports, 2019, 9(1): 1415-
牛业科学), 2020, 46(4): 16-20. 1442.
[37] TANG Q F (唐庆凤), PENG K P (彭开屏), WEI S J (韦升菊), et al. [53] DENG W P, WANG Y, YAN N. Production of organic acids from
Effects of three strains combinations of Lactobasillus buchneri, biomass resources[J]. Current Opinion in Green and Sustainable
Aspergillus niger, Candida tropicalis, Bacillus subtilis and Lactobacillus Chemistry, 2016, 2: 54-58.
plantarum on fermentation quality of cassava residue[J]. China [54] SHI N (石宁), TANG S Y (唐石云), LUO W Y (罗文艳), et al.
Animal Husbandry & Veterinary Medicine (中国畜牧兽医), 2016, Advances in catalytic conversion of biomass derived carbohydrates
43(7): 1729-1736. into latic acid[J]. Advances in New and Renewable Energy (新能源
[38] ZHANG Y X, VADLANI P V. Lactic acid production from 进展), 2018, 6(2): 102-112.
biomass-derived sugars via co-fermentation of Lactobacillus brevis [55] WATTANAPAPHAWONG P, REUBROYCHAROEN P, YAMAGUCHI
and Lactobacillus plantarum[J]. Journal of Bioscience and A. Conversion of cellulose into lactic acid using zirconium oxide
Bioengineering, 2015, 119(6): 694-699. catalysts[J]. RSC Advances, 2017, 7(30): 18561-18568.
[39] KHOR W C, ROUME H, COMA M, et al. Acetate accumulation [56] ASGHARI F S, YOSHIDA H. Kinetics of the decomposition of
enhances mixed culture fermentation of biomass to lactic acid[J]. fructose catalyzed by hydrochloric acid in subcritical water: Formation
Applied Microbiology and Biotechnology, 2016, 100(19): 8337- of 5-hydroxymethylfurfural, levulinic, and formic acids[J]. Industrial
8348. & Engineering Chemistry Research, 2007, 46(23): 7703-7710.
[40] KIM J, BLOCK D E, MILLS D A. Simultaneous consumption of [57] WATANABE M, SATO T, INOMATA H, et al. Chemical reactions
pentose and hexose sugars: An optimal microbial phenotype for of C-1 compounds in near-critical and supercritical water[J].
efficient fermentation of lignocellulosic biomass[J]. Applied Microbiology Chemical Reviews, 2004, 104(12): 5803-5821.
and Biotechnology, 2010, 88(5): 1077-1085. [58] LI S, DENG W P, LI Y Y, et al. Catalytic conversion of
[41] SUBRAMANIAM R, THIRUMAL V, CHISTOSERDOV A, et al. cellulose-based biomass and glycerol to lactic acid[J]. Journal of
High-density cultivation in the production of microbial products[J]. Energy Chemistry, 2019, 32: 138-151.
Chemical and Biochemical Engineering Quarterly, 2018, 32(4): [59] YAN X Y, JIN F M, TOHJI K, et al. Hydrothermal conversion of
451-464. carbohydrate biomass to lactic acid[J]. Aiche Journal, 2010, 56(10):
[42] NANCIB A, NANCIB N, BOUDRANT J. Production of lactic acid 2727-2733.
from date juice extract with free cells of single and mixed cultures of [60] ZI J W, CHANG J M, HONG L W, et al. Ca(OH) 2 induced a
Lactobacillus casei and Lactococcus lactis[J]. World Journal of controlled-release catalytic system for the efficient conversion of
Microbiology and Biotechnology, 2009, 25(8): 1423-1429. high-concentration glucose to lactic acid[J]. Molecular Catalysis,
[43] XU J J (徐娟娟). Preliminary study on production of lactic acid and 2021, 502: 111406.
feedstuff with straw by mix-fermentation[D]. Hefei: Anhui [61] MARIANOU A A, MICHAILOF C M, PINEDA A, et al. Effect of
Agricultural University (安徽农业大学), 2010. Lewis and Brønsted acidity on glucose conversion to 5-HMF and
[44] NEWTON J, OEGGL R, JANZEN N H, et al. Process adapted lactic acid in aqueous and organic media[J]. Applied Catalysis A:
calibration improves fluorometric pH sensor precision in sophisticated General, 2018, 555: 75-87.
fermentation processes[J]. Engineering in Life Sciences, 2020, 20(8): [62] YAN X Y, JIN F M, TOHJI K, et al. Production of lactic acid from
331-337. glucose by alkaline hydrothermal reaction[J]. Journal of Materials
[45] LV X P, LIU G F, SUN X M, et al. Nutrient consumption patterns of Science, 2007, 42(24): 9995-9999.
Lactobacillus acidophilus KLDS 1.0738 in controlled pH batch [63] LI L Y, SHEN F, SMITH R L, et al. Quantitative chemocatalytic