Page 86 - 《精细化工》2021年第12期
P. 86

·2448·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 Identification of a Bacillus coagulans and production of high optical   fermentations[J]. Journal of Dairy Science, 2017, 100(7): 5188-5194.
                 purity L-lactic acid  via synchronous saccharifying fermentation[J].   [46]  JUTURU V, WU J C. Microbial production of lactic acid: The latest
                 Journal of South China University of Technology (Natural Science   development[J]. Critical Reviews in Biotechnology, 2016, 36(6):
                 Edition) (华南理工大学学报:  自然科学版), 2017, 45(9): 81-87.   967-977.
            [31]  XIAO Y (肖雨). Research on mutagenesis breeding of Lactobacillus   [47]  LI Q Q (李青青). Studies on selection, physiological characteristics
                 bulgaricus and  D-lactic acid production by simultaneous   and application of an aeortolerant bifidobacterium[D].  Hangzhou:
                 saccharification of corn strover[D]. Changchun: Journal of Jilin   Zhejiang University (浙江大学), 2010.
                 Agricultural University (吉林农业大学), 2019.       [48]  ZOTTA T, PARENTE E, RICCIARDI A. Aerobic metabolism in the
            [32]  COSTA S, SUMMA D, SEMERARO B,  et al. Fermentation as a   genus Lactobacillus: Impact on stress response and potential applications
                 strategy for bio-transforming waste into resources:  Lactic  acid   in the food industry[J]. Journal of  Applied Microbiology, 2017,
                 production from agri-food residues[J]. Fermentation, 2021, 7(1): 3.   122(4): 857-869.
            [33]  OLSZEWSKA-WIDDRAT A, ALEXANDRI M, LÓPEZ-GÓMEZ J   [49]  HAN X S, LI L, WEI C X,  et al. Facilitation of L-lactic acid
                 P,  et al.  Batch  and continuous lactic  acid fermentation based on a   fermentation by  lignocellulose biomass rich in vitamin  B
                 multi-substrate approach[J]. Microorganisms, 2020, 8(7): 1084.   compounds[J]. Journal of Agricultural and Food Chemistry, 2019,
            [34]  BERLOWSKA J, CIECIURA W, BOROWSKI S, et al. Simultaneous   67(25): 7082-7086.
                 saccharification and fermentation of  sugar beet pulp with mixed   [50]  LI F K (李伏坤), ZHANG J (张杰), XU C (徐畅), et al. Progress in
                 bacterial cultures for lactic acid and propylene glycol production[J].   chemical catalytic conversion of lignocellulose to lactic acid and its
                 Molecules, 2016, 21(10): 1380.                    esters[J]. Applied  Chemical Industry (应用化工), 2019, 48(10):
            [35]  ALEXANDRI M,  SCHNEIDER R,  MEHLMANN K, et al. Recent   2440-2443.
                 advances in D-lactic acid production from renewable resources: Case   [51]  HOLM M S, SARAVANAMURUGAN S, TAARNING E. Conversion
                 studies on agro-industrial waste streams[J]. Food Technology and   of sugars to  lactic acid derivatives  using  heterogeneous zeotype
                 Biotechnology, 2019, 57(3): 293-304.              catalysts[J]. Science, 2010, 328(5978): 602-605.
            [36]  HUANG G Y (黄光云), HE R C (何仁春), LUO X Q (罗鲜青), et al.   [52]  TALLARICO S,  COSTANZO P,  BONACCI S,  et al. Combined
                 Study on the effects of different  microbial  addition combinations  of   ultrasound/microwave chemocatalytic method  for  selective conversion
                 mulberry branches and leaves silage[J]. China Cattle Science (中国  of cellulose into lactic acid[J]. Scientific Reports, 2019, 9(1): 1415-
                 牛业科学), 2020, 46(4): 16-20.                        1442.
            [37]  TANG Q F (唐庆凤), PENG K P (彭开屏), WEI S J (韦升菊), et al.   [53]  DENG W P, WANG Y, YAN N. Production of organic acids from
                 Effects of three strains combinations of Lactobasillus  buchneri,   biomass resources[J]. Current Opinion in Green and Sustainable
                 Aspergillus niger, Candida tropicalis, Bacillus subtilis and Lactobacillus   Chemistry, 2016, 2: 54-58.
                 plantarum on fermentation quality of cassava residue[J]. China   [54]  SHI N (石宁), TANG S Y (唐石云), LUO W Y (罗文艳),  et al.
                 Animal Husbandry & Veterinary Medicine (中国畜牧兽医), 2016,   Advances in catalytic conversion of biomass derived carbohydrates
                 43(7): 1729-1736.                                 into latic acid[J]. Advances in New and Renewable Energy (新能源
            [38]  ZHANG  Y X,  VADLANI P V.  Lactic acid production  from   进展), 2018, 6(2): 102-112.
                 biomass-derived sugars via co-fermentation of Lactobacillus brevis   [55]  WATTANAPAPHAWONG P, REUBROYCHAROEN P, YAMAGUCHI
                 and  Lactobacillus plantarum[J]. Journal of Bioscience and   A. Conversion of  cellulose into lactic acid using zirconium oxide
                 Bioengineering, 2015, 119(6): 694-699.            catalysts[J]. RSC Advances, 2017, 7(30): 18561-18568.
            [39]  KHOR W C, ROUME H, COMA M,  et al. Acetate accumulation   [56]  ASGHARI F S, YOSHIDA H. Kinetics of  the decomposition of
                 enhances mixed culture fermentation  of biomass to lactic acid[J].   fructose catalyzed by hydrochloric acid in subcritical water: Formation
                 Applied Microbiology and Biotechnology, 2016, 100(19): 8337-   of 5-hydroxymethylfurfural, levulinic, and formic acids[J]. Industrial
                 8348.                                             & Engineering Chemistry Research, 2007, 46(23): 7703-7710.
            [40]  KIM J,  BLOCK D E, MILLS D A.  Simultaneous consumption of   [57]  WATANABE M, SATO T, INOMATA H, et al. Chemical reactions
                 pentose and hexose sugars: An  optimal  microbial phenotype for   of C-1 compounds in near-critical and supercritical water[J].
                 efficient fermentation of lignocellulosic biomass[J]. Applied Microbiology   Chemical Reviews, 2004, 104(12): 5803-5821.
                 and Biotechnology, 2010, 88(5): 1077-1085.    [58]  LI S, DENG W P, LI Y Y,  et al. Catalytic conversion of
            [41]  SUBRAMANIAM  R, THIRUMAL V, CHISTOSERDOV A,  et al.   cellulose-based biomass and glycerol to lactic  acid[J].  Journal of
                 High-density cultivation in the production of microbial products[J].   Energy Chemistry, 2019, 32: 138-151.
                 Chemical and Biochemical Engineering Quarterly, 2018, 32(4):   [59]  YAN X Y, JIN F  M, TOHJI K, et al. Hydrothermal conversion of
                 451-464.                                          carbohydrate biomass to lactic acid[J]. Aiche Journal, 2010, 56(10):
            [42]  NANCIB A, NANCIB N, BOUDRANT J. Production of lactic acid   2727-2733.
                 from date juice extract with free cells of single and mixed cultures of   [60]  ZI J W, CHANG J M,  HONG L  W,  et al. Ca(OH) 2 induced  a
                 Lactobacillus casei  and  Lactococcus lactis[J]. World Journal of   controlled-release catalytic system for the efficient conversion of
                 Microbiology and Biotechnology, 2009, 25(8): 1423-1429.   high-concentration  glucose to lactic acid[J]. Molecular Catalysis,
            [43]  XU J J (徐娟娟). Preliminary study on production of lactic acid and   2021, 502: 111406.
                 feedstuff with straw by  mix-fermentation[D]. Hefei: Anhui   [61]  MARIANOU A A, MICHAILOF C M, PINEDA A, et al. Effect of
                 Agricultural University (安徽农业大学), 2010.           Lewis and Brønsted acidity on glucose conversion to 5-HMF and
            [44]  NEWTON J,  OEGGL R, JANZEN  N H,  et al. Process adapted   lactic acid in aqueous and  organic media[J]. Applied Catalysis A:
                 calibration improves fluorometric pH sensor precision in sophisticated   General, 2018, 555: 75-87.
                 fermentation processes[J]. Engineering in Life Sciences, 2020, 20(8):   [62]  YAN X Y, JIN F M, TOHJI K, et al. Production of lactic acid from
                 331-337.                                          glucose by  alkaline hydrothermal reaction[J]. Journal of Materials
            [45]  LV X P, LIU G F, SUN X M, et al. Nutrient consumption patterns of   Science, 2007, 42(24): 9995-9999.
                 Lactobacillus acidophilus KLDS 1.0738 in controlled pH batch   [63]  LI L Y, SHEN F,  SMITH R L,  et al. Quantitative chemocatalytic
   81   82   83   84   85   86   87   88   89   90   91