Page 94 - 《精细化工》2021年第12期
P. 94

·2456·                            精细化工   FINE CHEMICALS                                 第 38 卷

            制备,增强其应用于荧光防伪等领域的实际效果。                                 colored 3D images[J]. Journal of the American Chemical Society,
                (2)防伪油墨的性能提升                                       2014, 136(25): 8855-8858.
                                                               [13]  ANDRES J,  HERSCH R D, MOSER J  E,  et al. A  new anti-
                 对于防伪油墨,应重点研究其极性、黏度、表                              counterfeiting feature relying on invisible luminescent full color
            面张力、稳定性等,优化配方,进而提升其相应的                                 images printed with lanthanide-based inks[J]. Advanced Functional
                                                                   Materials, 2014, 24(32): 5029-5036.
            理化性能,使其印刷在不同基材上后不会轻易发生
                                                               [14]  XIE S W, TONG C, TAN H H,  et al. Hydrothermal synthesis and
            脱附和变质。此外,还应按需选择油墨介质(溶剂、                                inkjet printing of hexagonal-phase NaYF 4:Ln  upconversion hollow
                                                                                              3+
            黏合剂、助剂等),以实现印刷效果和图案分辨率的                                microtubes for smart anti-counterfeiting encryption[J]. Materials
                                                                   Chemistry Frontiers, 2018, 2(11): 1997-2005.
            平衡。                                                [15]  LIU Y L, AI K L, LU L H. Designing lanthanide-doped nanocrystals
                (3)成本控制                                            with both up- and down-conversion luminescence for anti-
                 使用喷墨印刷、丝网印刷等技术进行防伪印刷                              counterfeiting[J]. Nanoscale, 2011, 3(11): 4804-4810.
                                                               [16]  XU L M,  CHEN J W, SONG J  Z,  et al. Double-protected
            成本较高。对基于 UCNPs 的防伪标签、图案和编码                             all-inorganic perovskite nanocrystals by crystalline matrix and silica
            等的快速检测识别需要用到仅在实验室中较为常见                                 for triple-modal anti-counterfeiting codes[J]. ACS Applied Materials
                                                                   & Interfaces, 2017, 9(31): 26556-26564.
            的先进设备。因此,应开发与现有技术相比,成本
                                                               [17]  KALYTCHUK S,  WANG  Y, POLÁKOVÁ K,  et al. Carbon dot
            更低且印刷效果相当,甚至更出色的印刷技术,其                                 fluorescence-lifetime-encoded anti-counterfeiting[J]. ACS Applied
            在快速检测识别时也仅需常规设备即可,降低设备                                 Materials & Interfaces, 2018, 10(35): 29902-29908.
                                                               [18]  ZHOU  J, LIU Q,  FENG W,  et al. Upconversion luminescent
            运维成本、操作难度以及检测人员的准入门槛。
                                                                   materials: Advances and applications[J].  Chemical Reviews, 2015,
                                                                   115(1): 395-465.
            参考文献:
                                                               [19]  RESCH-GENGER  U, GRABOLLE M, CAVALIERE-JARICOT S,
            [1]   GU Y Q, HE C, ZHANG Y Q, et al. Gap-enhanced Raman tags for   et al. Quantum dots versus organic dyes as fluorescent labels[J].
                 physically  unclonable  anticounterfeiting  labels[J].  Nature  Nature Methods, 2008, 5(9): 763-775.
                 Communications, 2020, 11: 516.                [20]  FREEMAN R,  WILLNER I. Optical  molecular sensing with
            [2]   REN W, LIN G G, CHRISTIAN C, et al. Optical nanomaterials and   semiconductor quantum dots (QDs)[J]. Chemical Society Reviews,
                 enabling technologies for high-security-level anticounterfeiting[J].   2012, 41(10): 4067-4085.
                 Advanced Materials, 2020, 32(18): 1901430.    [21]  HAGSTROM A L, LEE H L, LEE M S,  et al. Flexible and
            [3]   CHENG S, SHEN X Y,  ZHU Y N,  et al. Excitation wavelength-   micropatternable triplet-triplet annihilation upconversion thin films
                 dependent dual-mode luminescence emission for dynamic multicolor   for photonic device integration and anticounterfeiting applications[J].
                 anticounterfeiting[J]. ACS  Applied Materials & Interfaces, 2019,   ACS Applied Materials & Interfaces, 2018, 10(10): 8985-8992.
                 11(20): 18548-18554.                          [22]  SUN T Y, XU B  Z, CHEN B,  et al. Anti-counterfeiting patterns
            [4]   WANG J,  MA J, ZHANG J  C,  et al. Advanced dynamic   encrypted with multi-mode luminescent nanotaggants[J]. Nanoscale,
                 photoluminescent material for dynamic anticounterfeiting and   2017, 9(8): 2701-2705.
                 encryption[J]. ACS Applied Materials & Interfaces, 2019, 11(39):   [23]  HAASE M, SCHÄFER H. Upconverting nanoparticles[J]. Angewandte
                 35871-35878.                                      Chemie International Edition, 2011, 50(26): 5808-5829.
            [5]   JIANG K, ZHANG L, LU J F, et al. Triple-mode emission of carbon   [24]  WANG F, LIU X G. Recent advances in the chemistry of lanthanide-
                 dots: Applications  for advanced anti-counterfeiting[J]. Angewandte   doped upconversion nanocrystals[J]. Chemical Society  Reviews,
                 Chemie International Edition, 2016, 55(25): 7231-7235.   2009, 38(4): 976-989.
            [6]   YU X W, ZHANG R Y, YU J H. Luminescence anti-counterfeiting:   [25]  WEN S H, ZHOU J J, ZHENG K Z, et al. Advances in highly doped
                 From elementary to advanced[J]. Aggregate, 2021, 2: 20-34.   upconversion nanoparticles[J]. Nature Communications, 2018, 9:
            [7]   FAN Y, JIN  X  F,  WANG M Y,  et al. Multimode  dynamic   2415.
                 photoluminescent anticounterfeiting  and encryption based on a   [26]  YAO W J, TIAN Q Y, WU W. Tunable emissions of upconversion
                 dynamic photoluminescent material[J]. Chemical Engineering Journal,   fluorescence for security applications[J]. Advanced Optical Materials,
                 2020, 393: 124799.                                2019, 7(6): 1801171.
            [8]   LI D Y,  TANG  L H, WANG J J,  et al. Multidimensional SERS   [27]  ZHU X H, ZHANG J, LIU J L, et al. Recent progress of rare-earth
                 barcodes  on  flexible  patterned  plasmonic  metafilm  for  doped upconversion nanoparticles:  Synthesis,  optimization, and
                 anticounterfeiting applications[J]. Advanced Optical Materials, 2016,   applications[J]. Advanced Science, 2019, 6(22): 1901358.
                 4(10): 1475-1480.                             [28]  LE X  T, YOUN  Y S.  Emerging NIR light-responsive delivery
            [9]   LIU J, RIJCKAERT H, ZENG M,  et al. Simultaneously  excited   systems based on  lanthanide-doped upconverting nanoparticles[J].
                 downshifting/upconversion luminescence from lanthanide-doped   Archives of Pharmacal Research, 2020, 43(1): 134-152.
                                                                                                 −
                 core/shell fluoride nanoparticles for multimode anticounterfeiting[J].   [29]  FENG Y  S,  LI Z,  LI Q Q,  et al. Internal OH  induced cascade
                 Advanced Functional Materials, 2018, 28(17): 1707365.   quenching  of upconversion luminescence in NaYF 4:Yb/Er
            [10]  MITROKOTSA A, RIEBACK M R, TANENBAUM A S. Classifying   nanocrystals[J]. Light: Science & Applications, 2021, 10: 105.
                                                                                                   2+
                 RFID attacks and defenses[J]. Information Systems Frontiers, 2010,   [30]  LUO Y, ZHANG W, LIAO Z F, et al. Role of Mn  doping in the
                 12(5): 491-505.                                   preparation of core-shell structured Fe 3O 4@upconversion nanoparticles
            [11]  SINGH R, SINGH E, NALWA H S. Inkjet printed nanomaterial   and their applications in T 1/T 2-weighted magnetic resonance imaging,
                 based flexible radio frequency identification (RFID) tag sensors for   upconversion  luminescent  imaging and near-Infrared activated
                 the internet of nano things[J]. RSC Advances, 2017, 7(77): 48597-   photodynamic therapy[J]. Nanomaterials, 2018, 8(7): 466.
                 48630.                                        [31]  WANG F, HAN Y, LIM C S,  et al.  Simultaneous  phase and size
            [12]  PENG H Y, BI S  G, NI M  L,  et al.  Monochromatic visible light   control of upconversion nanocrystals through lanthanide doping[J].
                 “photoinitibitor”: Janus-faced initiation and inhibition for storage of   Nature, 2010, 463(7284): 1061-1065.
   89   90   91   92   93   94   95   96   97   98   99