Page 94 - 《精细化工》2021年第12期
P. 94
·2456· 精细化工 FINE CHEMICALS 第 38 卷
制备,增强其应用于荧光防伪等领域的实际效果。 colored 3D images[J]. Journal of the American Chemical Society,
(2)防伪油墨的性能提升 2014, 136(25): 8855-8858.
[13] ANDRES J, HERSCH R D, MOSER J E, et al. A new anti-
对于防伪油墨,应重点研究其极性、黏度、表 counterfeiting feature relying on invisible luminescent full color
面张力、稳定性等,优化配方,进而提升其相应的 images printed with lanthanide-based inks[J]. Advanced Functional
Materials, 2014, 24(32): 5029-5036.
理化性能,使其印刷在不同基材上后不会轻易发生
[14] XIE S W, TONG C, TAN H H, et al. Hydrothermal synthesis and
脱附和变质。此外,还应按需选择油墨介质(溶剂、 inkjet printing of hexagonal-phase NaYF 4:Ln upconversion hollow
3+
黏合剂、助剂等),以实现印刷效果和图案分辨率的 microtubes for smart anti-counterfeiting encryption[J]. Materials
Chemistry Frontiers, 2018, 2(11): 1997-2005.
平衡。 [15] LIU Y L, AI K L, LU L H. Designing lanthanide-doped nanocrystals
(3)成本控制 with both up- and down-conversion luminescence for anti-
使用喷墨印刷、丝网印刷等技术进行防伪印刷 counterfeiting[J]. Nanoscale, 2011, 3(11): 4804-4810.
[16] XU L M, CHEN J W, SONG J Z, et al. Double-protected
成本较高。对基于 UCNPs 的防伪标签、图案和编码 all-inorganic perovskite nanocrystals by crystalline matrix and silica
等的快速检测识别需要用到仅在实验室中较为常见 for triple-modal anti-counterfeiting codes[J]. ACS Applied Materials
& Interfaces, 2017, 9(31): 26556-26564.
的先进设备。因此,应开发与现有技术相比,成本
[17] KALYTCHUK S, WANG Y, POLÁKOVÁ K, et al. Carbon dot
更低且印刷效果相当,甚至更出色的印刷技术,其 fluorescence-lifetime-encoded anti-counterfeiting[J]. ACS Applied
在快速检测识别时也仅需常规设备即可,降低设备 Materials & Interfaces, 2018, 10(35): 29902-29908.
[18] ZHOU J, LIU Q, FENG W, et al. Upconversion luminescent
运维成本、操作难度以及检测人员的准入门槛。
materials: Advances and applications[J]. Chemical Reviews, 2015,
115(1): 395-465.
参考文献:
[19] RESCH-GENGER U, GRABOLLE M, CAVALIERE-JARICOT S,
[1] GU Y Q, HE C, ZHANG Y Q, et al. Gap-enhanced Raman tags for et al. Quantum dots versus organic dyes as fluorescent labels[J].
physically unclonable anticounterfeiting labels[J]. Nature Nature Methods, 2008, 5(9): 763-775.
Communications, 2020, 11: 516. [20] FREEMAN R, WILLNER I. Optical molecular sensing with
[2] REN W, LIN G G, CHRISTIAN C, et al. Optical nanomaterials and semiconductor quantum dots (QDs)[J]. Chemical Society Reviews,
enabling technologies for high-security-level anticounterfeiting[J]. 2012, 41(10): 4067-4085.
Advanced Materials, 2020, 32(18): 1901430. [21] HAGSTROM A L, LEE H L, LEE M S, et al. Flexible and
[3] CHENG S, SHEN X Y, ZHU Y N, et al. Excitation wavelength- micropatternable triplet-triplet annihilation upconversion thin films
dependent dual-mode luminescence emission for dynamic multicolor for photonic device integration and anticounterfeiting applications[J].
anticounterfeiting[J]. ACS Applied Materials & Interfaces, 2019, ACS Applied Materials & Interfaces, 2018, 10(10): 8985-8992.
11(20): 18548-18554. [22] SUN T Y, XU B Z, CHEN B, et al. Anti-counterfeiting patterns
[4] WANG J, MA J, ZHANG J C, et al. Advanced dynamic encrypted with multi-mode luminescent nanotaggants[J]. Nanoscale,
photoluminescent material for dynamic anticounterfeiting and 2017, 9(8): 2701-2705.
encryption[J]. ACS Applied Materials & Interfaces, 2019, 11(39): [23] HAASE M, SCHÄFER H. Upconverting nanoparticles[J]. Angewandte
35871-35878. Chemie International Edition, 2011, 50(26): 5808-5829.
[5] JIANG K, ZHANG L, LU J F, et al. Triple-mode emission of carbon [24] WANG F, LIU X G. Recent advances in the chemistry of lanthanide-
dots: Applications for advanced anti-counterfeiting[J]. Angewandte doped upconversion nanocrystals[J]. Chemical Society Reviews,
Chemie International Edition, 2016, 55(25): 7231-7235. 2009, 38(4): 976-989.
[6] YU X W, ZHANG R Y, YU J H. Luminescence anti-counterfeiting: [25] WEN S H, ZHOU J J, ZHENG K Z, et al. Advances in highly doped
From elementary to advanced[J]. Aggregate, 2021, 2: 20-34. upconversion nanoparticles[J]. Nature Communications, 2018, 9:
[7] FAN Y, JIN X F, WANG M Y, et al. Multimode dynamic 2415.
photoluminescent anticounterfeiting and encryption based on a [26] YAO W J, TIAN Q Y, WU W. Tunable emissions of upconversion
dynamic photoluminescent material[J]. Chemical Engineering Journal, fluorescence for security applications[J]. Advanced Optical Materials,
2020, 393: 124799. 2019, 7(6): 1801171.
[8] LI D Y, TANG L H, WANG J J, et al. Multidimensional SERS [27] ZHU X H, ZHANG J, LIU J L, et al. Recent progress of rare-earth
barcodes on flexible patterned plasmonic metafilm for doped upconversion nanoparticles: Synthesis, optimization, and
anticounterfeiting applications[J]. Advanced Optical Materials, 2016, applications[J]. Advanced Science, 2019, 6(22): 1901358.
4(10): 1475-1480. [28] LE X T, YOUN Y S. Emerging NIR light-responsive delivery
[9] LIU J, RIJCKAERT H, ZENG M, et al. Simultaneously excited systems based on lanthanide-doped upconverting nanoparticles[J].
downshifting/upconversion luminescence from lanthanide-doped Archives of Pharmacal Research, 2020, 43(1): 134-152.
−
core/shell fluoride nanoparticles for multimode anticounterfeiting[J]. [29] FENG Y S, LI Z, LI Q Q, et al. Internal OH induced cascade
Advanced Functional Materials, 2018, 28(17): 1707365. quenching of upconversion luminescence in NaYF 4:Yb/Er
[10] MITROKOTSA A, RIEBACK M R, TANENBAUM A S. Classifying nanocrystals[J]. Light: Science & Applications, 2021, 10: 105.
2+
RFID attacks and defenses[J]. Information Systems Frontiers, 2010, [30] LUO Y, ZHANG W, LIAO Z F, et al. Role of Mn doping in the
12(5): 491-505. preparation of core-shell structured Fe 3O 4@upconversion nanoparticles
[11] SINGH R, SINGH E, NALWA H S. Inkjet printed nanomaterial and their applications in T 1/T 2-weighted magnetic resonance imaging,
based flexible radio frequency identification (RFID) tag sensors for upconversion luminescent imaging and near-Infrared activated
the internet of nano things[J]. RSC Advances, 2017, 7(77): 48597- photodynamic therapy[J]. Nanomaterials, 2018, 8(7): 466.
48630. [31] WANG F, HAN Y, LIM C S, et al. Simultaneous phase and size
[12] PENG H Y, BI S G, NI M L, et al. Monochromatic visible light control of upconversion nanocrystals through lanthanide doping[J].
“photoinitibitor”: Janus-faced initiation and inhibition for storage of Nature, 2010, 463(7284): 1061-1065.