Page 91 - 《精细化工》2020年第2期
P. 91
第 2 期 马 浩,等: 5-羟甲基糠醛及糖类定向转化制备 2,5-呋喃二甲酸的研究进展 ·293·
[62] YUAN H B, LIU H L, DU J K, et al. Biocatalytic production of and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a
2,5-furandicarboxylic acid: Recent advances and future perspectives recyclable Fe 3O 4-CoO x magnetite nanocatalyst[J]. ACS Sustainable
[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 527- Chemistry & Engineering, 2015, 3(3): 406-412.
543. [72] LIU H, LI W L, ZUO M, et al. Facile and efficient two-step
[63] VAN DEURZEN M P J, VAN RANTWIJK F, SHELDON R A. formation of a renewable monomer 2,5-furandicarboxylic acid from
Chloroperoxidase-catalyzed oxidation of 5-hydroxymethylfurfural[J]. carbohydrates over the NiO x catalyst[J]. Industrial & Engineering
Journal of Carbohydrate Chemistry, 1997, 16(3): 299-309. Chemistry Research, 2020, 59(11): 4895-4904.
[64] DIJKMAN W P, GROOTHUIS D E, FRAAIJE M W. Enzyme- [73] KROGER M, PRUSE U, VORLOP K. A new approach for the
catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5- production of 2,5-furandicarboxylic acid by in situ oxidation of 5-
dicarboxylic acid[J]. Angewandte Chemie International Edition, hydroxymethylfurfural starting from fructose[J]. Topics in Catalysis,
2014, 53(25): 6515-6518. 2000, 13(3): 237-242.
[65] CARRO J, FERREIRA P, RODRIGUEZ L, et al. [74] YI G S, TEONG S P, ZHANG Y G. The direct conversion of sugars
5-Hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase into 2,5-furandicarboxylic acid in a triphasic system[J]. ChemSusChem,
and unspecific peroxygenase[J]. Febs Journal, 2015, 282(16): 3218- 2015, 8(7): 1151-1155.
3229. [75] RIBEIRO M L, SCHUCHARDT U. Cooperative effect of cobalt
[66] WU S L, LIU Q S, TAN H D, et al. A novel 2,5-furandicarboxylic acetylacetonate and silica in the catalytic cyclization and oxidation of
acid biosynthesis route from biomass-derived 5-hydroxymethylfurfural fructose to 2,5-furandicarboxylic acid[J]. Catalysis Communications,
based on the consecutive enzyme reactions[J]. Applied Biochemistry 2003, 4(2): 83-86.
and Biotechnology, 2020, 191(4): 1470-1482. [76] YAN D X, WANG G Y, GAO K, et al. One-pot synthesis of
[67] WIERCKX N, KOOPMAN F, BANDOUNAS L, et al. Isolation and 2,5-furandicarboxylic acid from fructose in ionic liquids[J]. Industrial
characterization of Cupriavidus basilensis HMF14 for biological & Engineering Chemistry Research, 2018, 57(6): 1851-1858.
removal of inhibitors from lignocellulosic hydrolysate[J]. Microbial [77] CHEN G Y, WU L B, FAN H, et al. Highly efficient two-step
Biotechnology, 2010, 3(3): 336-343. synthesis of 2,5-furandicarboxylic acid from fructose without
[68] KOOPMAN F, WIERCKX N, DE WINDE J H, et al. Efficient 5-hydroxymethylfurfural (HMF) separation: In situ oxidation of
whole-cell biotransformation of 5-(hydroxymethyl)furfural into HMF in alkaline aqueous H 2O/DMSO mixed solvent under mild
FDCA, 2,5-furandicarboxylic acid[J]. Bioresource Technology, 2010, conditions[J]. Industrial & Engineering Chemistry Research, 2018,
101(16): 6291-6296. 57(48): 16172-16181.
[69] BOISEN A, CHRISTENSEN T B, FU W, et al. Process integration [78] MOTAGAMWALA A H, WON W, SENER C, et al. Toward
for the conversion of glucose to 2,5-furandicarboxylic acid[J]. biomass-derived renewable plastics: Production of 2,5-
Chemical Engineering Research & Design, 2009, 87(9A): 1318- furandicarboxylic acid from fructose[J]. Science Advances, 2018,
1327. 4(1): eaap9722.
[70] YI G S, TEONG S P, LI X K, et al. Purification of biomass-derived [79] DESSBESELL L, SOUZANCHI S, VENKATESWARA RAO K T,
5-hydroxymethylfurfural and its catalytic conversion to 2,5- et al. Production of 2,5-furandicarboxylic acid (FDCA) from starch,
furandicarboxylic acid[J]. ChemSusChem, 2014, 7(8): 2131-2135. glucose, or high-fructose corn syrup: Techno-economic analysis[J].
[71] WANG S G, ZHANG Z H, LIU B. Catalytic conversion of fructose Biofuels, Bioproducts and Biorefining, 2019, 13: 1234-1245.
(上接第 258 页) Trends in Analytical Chemistry, 2019, 118: 401-425.
[36] LIU D, WAN J W, PANG G S, et al. Hollow metal-organic-
[29] SMITH M K, MIRICA M K. Self-organized frameworks on textiles framework micro/nanostructures and their derivatives: Emerging
(SOFT): Conductive fabrics for simultaneous sensing, capture, and multifunctional materials[J]. Advanced Materials, 2019, 31(38):
filtration of gases[J]. Journal of the American Chemical Society, e1803291.
2017, 139(46): 16759-16767. [37] KOO W T, CHA J H, JUNG J W, et al. Few-layered WS 2 nanoplates
[30] KIRCHON A, FENG L, DRAKE H F, et al. From fundamentals to
confined in Co, N-doped hollow carbon nanocages: Abundant WS 2
applications: A toolbox for robust and multifunctional MOF edges for highly sensitive gas sensors[J]. Advanced Functional
materials[J]. Chemical Society Reviews, 2018, 47(23): 8611-8638. Materials, 2018, 28(36): 1802575.
[31] JIANG H L, XU Q. Porous metal-organic frameworks as platforms [38] YANG Z M, ZHANG D Z, CHEN H N. MOF-derived indium oxide
for functional applications[J]. Chemical Communications, 2011, hollow microtubes/MoS 2 nanoparticles for NO 2 gas sensing[J].
47(12): 3351-3370. Sensors and Actuators B-Chemical, 2019, 300: 127037.
[32] DMELLO M E, SUNDARAM N G, KALIDINDI S B. Assembly of [39] LIU S, ZHANG Y Q, GAO S, et al. An organometallic chemistry-
ZIF-67 metal-organic framework over tin oxide nanoparticles for assisted strategy for modification of zinc oxide nanoparticles by tin
synergistic chemiresistive CO 2 gas sensing[J]. Chemistry-A European oxide nanoparticles: Formation of n-n heterojunction and boosting
Journal, 2018, 24(37): 9220-9223. NO 2 sensing properties[J]. Journal of Colloid and Interface Science,
[33] CHOI S J, CHOI H J, KOO W T, et al. Metal-oganic framework- 2020, 567: 328-338.
templated PdO-Co 3O 4 nanocubes functionalized by SWCNTs: [40] TANG W ( 唐伟 ), WANG J ( 王兢 ). Enhanced gas sensing
Improved NO 2 reaction kinetics on flexible heating film[J]. ACS mechanisms of metal oxide heterojunction gas sensors[J]. Acta
Applied Materials & Interfaces, 2017, (46): 40593-40603. Physico-Chimica Sinica (物理化学学报), 2016, 32(5): 1087-1104.
[34] MENG Z, AYKANAT A, MIRICA K A. Welding [41] JIAO L, SEOW J Y R, SKINNER W S, et al. Metal-organic
metallophthalocyanines into bimetallic molecular meshes for frameworks: Structures and functional applications[J]. Materials
ultrasensitive, low-power chemiresistive detection of gases[J]. Today, 2019, 27: 43-68.
Journal of the American Chemical Society, 2019, 141(5): 2046-2053. [42] GE H (葛慧), MIAO Y Y (苗媛媛), ZHAO Y X (赵云霞), et al.
[35] SAFAEI M, FOROUGHI M M, EBRAHIMPOOR N, et al. A review Research progress of modified metal-organic frameworks for CO 2
on metal-organic frameworks: Synthesis and applications[J]. Trac capture[J]. Environmental Chemistry (环境化学), 2018, 37(1): 32-40.