Page 91 - 《精细化工》2020年第2期
P. 91

第 2 期              马   浩,等: 5-羟甲基糠醛及糖类定向转化制备 2,5-呋喃二甲酸的研究进展                              ·293·


            [62]  YUAN H B, LIU  H L,  DU J K,  et al. Biocatalytic production of   and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a
                 2,5-furandicarboxylic acid: Recent advances and future perspectives   recyclable Fe 3O 4-CoO x magnetite nanocatalyst[J]. ACS  Sustainable
                 [J]. Applied Microbiology and Biotechnology, 2020, 104(2): 527-   Chemistry & Engineering, 2015, 3(3): 406-412.
                 543.                                          [72]  LIU H, LI W  L, ZUO M,  et al.  Facile and efficient two-step
            [63]  VAN DEURZEN  M P J, VAN RANTWIJK F, SHELDON R A.   formation of a renewable monomer 2,5-furandicarboxylic acid from
                 Chloroperoxidase-catalyzed oxidation of 5-hydroxymethylfurfural[J].   carbohydrates over the NiO x catalyst[J]. Industrial & Engineering
                 Journal of Carbohydrate Chemistry, 1997, 16(3): 299-309.   Chemistry Research, 2020, 59(11): 4895-4904.
            [64]  DIJKMAN W P, GROOTHUIS D E, FRAAIJE M W. Enzyme-   [73]  KROGER M, PRUSE U,  VORLOP K. A new approach for the
                 catalyzed oxidation of  5-hydroxymethylfurfural to furan-2,5-   production of 2,5-furandicarboxylic acid by  in situ oxidation of 5-
                 dicarboxylic acid[J]. Angewandte Chemie International Edition,   hydroxymethylfurfural starting from fructose[J]. Topics in Catalysis,
                 2014, 53(25): 6515-6518.                          2000, 13(3): 237-242.
            [65]  CARRO  J,  FERREIRA  P,  RODRIGUEZ  L,  et  al.   [74]  YI G S, TEONG S P, ZHANG Y G. The direct conversion of sugars
                 5-Hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase   into 2,5-furandicarboxylic acid in a triphasic system[J]. ChemSusChem,
                 and unspecific peroxygenase[J]. Febs Journal, 2015, 282(16): 3218-   2015, 8(7): 1151-1155.
                 3229.                                         [75]  RIBEIRO M  L, SCHUCHARDT U.  Cooperative effect  of cobalt
            [66]  WU S L, LIU Q S, TAN H D, et al. A novel 2,5-furandicarboxylic   acetylacetonate and silica in the catalytic cyclization and oxidation of
                 acid biosynthesis route from biomass-derived 5-hydroxymethylfurfural   fructose to 2,5-furandicarboxylic acid[J]. Catalysis Communications,
                 based on the consecutive enzyme reactions[J]. Applied Biochemistry   2003, 4(2): 83-86.
                 and Biotechnology, 2020, 191(4): 1470-1482.   [76]  YAN D X,  WANG G Y, GAO K,  et al. One-pot synthesis  of
            [67]  WIERCKX N, KOOPMAN F, BANDOUNAS L, et al. Isolation and   2,5-furandicarboxylic acid from fructose in ionic liquids[J]. Industrial
                 characterization of  Cupriavidus basilensis HMF14 for biological   & Engineering Chemistry Research, 2018, 57(6): 1851-1858.
                 removal of inhibitors from lignocellulosic hydrolysate[J]. Microbial   [77]  CHEN G  Y, WU  L  B, FAN H,  et al. Highly efficient two-step
                 Biotechnology, 2010, 3(3): 336-343.               synthesis of  2,5-furandicarboxylic acid from fructose without
            [68]  KOOPMAN F, WIERCKX N, DE  WINDE J H,  et al. Efficient   5-hydroxymethylfurfural (HMF) separation:  In situ oxidation of
                 whole-cell biotransformation of 5-(hydroxymethyl)furfural into   HMF in alkaline aqueous H 2O/DMSO mixed solvent under mild
                 FDCA, 2,5-furandicarboxylic acid[J]. Bioresource Technology, 2010,   conditions[J]. Industrial & Engineering Chemistry Research, 2018,
                 101(16): 6291-6296.                               57(48): 16172-16181.
            [69]  BOISEN A, CHRISTENSEN T B, FU W, et al. Process integration   [78]  MOTAGAMWALA A H,  WON  W, SENER  C,  et al. Toward
                 for  the conversion of  glucose to  2,5-furandicarboxylic acid[J].   biomass-derived  renewable  plastics:  Production  of  2,5-
                 Chemical Engineering Research & Design, 2009, 87(9A): 1318-   furandicarboxylic acid from fructose[J]. Science  Advances, 2018,
                 1327.                                             4(1): eaap9722.
            [70]  YI G S, TEONG S P, LI X K, et al. Purification of biomass-derived   [79]  DESSBESELL L, SOUZANCHI S, VENKATESWARA RAO K T,
                 5-hydroxymethylfurfural and its catalytic conversion to 2,5-   et al. Production of 2,5-furandicarboxylic acid (FDCA) from starch,
                 furandicarboxylic acid[J]. ChemSusChem, 2014, 7(8): 2131-2135.   glucose, or  high-fructose corn syrup:  Techno-economic analysis[J].
            [71]  WANG S G, ZHANG Z H, LIU B. Catalytic conversion of fructose   Biofuels, Bioproducts and Biorefining, 2019, 13: 1234-1245.


            (上接第 258 页)                                            Trends in Analytical Chemistry, 2019, 118: 401-425.
                                                               [36]  LIU D, WAN J  W, PANG G S,  et al. Hollow metal-organic-
            [29]  SMITH M K, MIRICA M K. Self-organized frameworks on textiles   framework micro/nanostructures and their derivatives:  Emerging
                 (SOFT): Conductive fabrics for  simultaneous sensing, capture, and   multifunctional materials[J]. Advanced Materials, 2019, 31(38):
                 filtration of gases[J].  Journal of the American Chemical Society,   e1803291.
                 2017, 139(46): 16759-16767.                   [37]  KOO W T, CHA J H, JUNG J W, et al. Few-layered WS 2 nanoplates
            [30]  KIRCHON A, FENG L, DRAKE H F, et al. From fundamentals to
                                                                   confined in Co, N-doped hollow carbon nanocages: Abundant WS 2
                 applications: A toolbox for robust and  multifunctional MOF   edges for highly sensitive gas sensors[J]. Advanced Functional
                 materials[J]. Chemical Society Reviews, 2018, 47(23): 8611-8638.     Materials, 2018, 28(36): 1802575.
            [31]  JIANG H L, XU Q. Porous metal-organic frameworks as platforms   [38]  YANG Z M, ZHANG D Z, CHEN H N. MOF-derived indium oxide
                 for functional applications[J].  Chemical Communications,  2011,   hollow microtubes/MoS 2  nanoparticles for NO 2 gas  sensing[J].
                 47(12): 3351-3370.                                Sensors and Actuators B-Chemical, 2019, 300: 127037.
            [32]  DMELLO M E, SUNDARAM N G, KALIDINDI S B. Assembly of   [39]  LIU S, ZHANG Y Q, GAO S, et al. An organometallic chemistry-
                 ZIF-67 metal-organic framework over tin oxide nanoparticles for   assisted strategy for modification of zinc oxide nanoparticles by tin
                 synergistic chemiresistive CO 2 gas sensing[J]. Chemistry-A European   oxide nanoparticles: Formation of  n-n  heterojunction and boosting
                 Journal, 2018, 24(37): 9220-9223.                 NO 2 sensing properties[J]. Journal of Colloid and Interface Science,
            [33]  CHOI S J, CHOI H J, KOO W T,  et al. Metal-oganic framework-   2020, 567: 328-338.
                 templated PdO-Co 3O 4 nanocubes functionalized by SWCNTs:   [40]  TANG W ( 唐伟 ), WANG J ( 王兢 ). Enhanced gas sensing
                 Improved NO 2 reaction kinetics on flexible heating film[J]. ACS   mechanisms of  metal oxide heterojunction gas sensors[J]. Acta
                 Applied Materials & Interfaces, 2017, (46): 40593-40603.     Physico-Chimica Sinica (物理化学学报), 2016, 32(5): 1087-1104.
            [34]  MENG  Z,  AYKANAT  A,  MIRICA  K  A.  Welding  [41]  JIAO L, SEOW J Y R, SKINNER W S,  et al. Metal-organic
                 metallophthalocyanines into  bimetallic molecular  meshes for   frameworks:  Structures and functional applications[J].  Materials
                 ultrasensitive, low-power chemiresistive detection of gases[J].   Today, 2019, 27: 43-68.
                 Journal of the American Chemical Society, 2019, 141(5): 2046-2053.     [42]  GE H (葛慧),  MIAO Y Y  (苗媛媛),  ZHAO Y X  (赵云霞),  et al.
            [35]  SAFAEI M, FOROUGHI M M, EBRAHIMPOOR N, et al. A review   Research progress  of modified metal-organic frameworks for CO 2
                 on metal-organic frameworks:  Synthesis and applications[J].  Trac   capture[J]. Environmental Chemistry (环境化学), 2018, 37(1): 32-40.
   86   87   88   89   90   91   92   93   94   95   96