Page 90 - 《精细化工》2020年第2期
P. 90

·292·                             精细化工   FINE CHEMICALS                                 第 38 卷

                 Industrial & Engineering Chemistry Research, 2019, 58(1): 128-137.   [45]  VUYYURU K R, STRASSER P. Oxidation of biomass derived
            [29]  HAN X W, GENG L, GUO Y, et al. Base-free aerobic oxidation of   5-hydroxymethylfurfural  using heterogeneous and electrochemical
                 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C-   catalysis[J]. Catalysis Today, 2012, 195(1): 144-154.
                 O-Mg catalyst[J]. Green Chemistry, 2016, 18(6): 1597-1604.   [46]  CATTANEO S, BONINCONTRO D, BTRE T,  et al. Continuous
            [30]  GUPTA N K, NISHIMURA S, TAKAGAKI A, et al. Hydrotalcite-   flow synthesis of bimetallic AuPd catalysts for the selective oxidation
                 supported gold-nanoparticle-catalyzed highly efficient base-free   of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J].
                 aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic   ChemNanoMat, 2020, 6(3): 420-426.
                 acid under atmospheric oxygen pressure[J]. Green Chemistry, 2011,   [47]  LIAO Y T, NGUYEN VAN C, ISHIGURO N, et al. Engineering a
                 13(4): 824-827.                                   homogeneous alloy-oxide interface derived  from  metal-organic
            [31]  GAO T Y, YIN Y X, FANG W H, et al. Highly dispersed ruthenium   frameworks for selective oxidation of 5-hydroxymethylfurfural to 2,
                 nanoparticles on hydroxyapatite as selective and reusable catalyst for   5-furandicarboxylic acid[J]. Applied Catalysis B:  Environmental,
                 aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic   2020, 270: 118805.
                 acid under base-free  conditions[J]. Molecular Catalysis, 2018, 450:   [48]  GUPTA K, RAI R K, DWIVEDI A D, et al. Catalytic aerial oxidation
                 55-64.                                            of biomass-derived furans to  furan carboxylic acids in  water over
            [32]  PICHLER C M, AL-SHAAL M G, GU D, et al. Ruthenium supported   bimetallic nickel-palladium alloy nanoparticles[J]. ChemCatChem,
                 on high-surface-area zirconia as an efficient catalyst for the base-free   2017, 9(14): 2760-2767.
                 oxidation of  5-hydroxymethylfurfural to 2,5-furandicarboxylic acid   [49]  PASINI  T, PICCININI M,  BLOSI M,  et al. Selective oxidation of
                 [J]. ChemSusChem, 2018, 11(13): 2083-2090.        5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles
            [33]  ZUO  X  B,  VENKITASUBRAMANIAN P, BUSCH D H,  et al.   [J]. Green Chemistry, 2011, 13(8): 2091-2099.
                 Optimization  of  Co/Mn/Br-catalyzed  oxidation  of  [50]  CHOOUDHARY  H, EBITANI K.  Hydrotalcite-supported PdPt-
                 5-hydroxymethylfurfural to enhance 2,5-furandicarboxylic acid yield   catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-
                 and minimize substrate burning[J]. ACS Sustainable Chemistry &   furandicarboxylic acid in water[J]. Chemistry Letters, 2016, 45(6):
                 Engineering, 2016, 4(7): 3659-3668.               613-615.
            [34]  ZUO X  B, CHAUDHARI A S, SNAVELY K,  et al. Kinetics of   [51]  WAN X Y, ZHOU C M, CHEN J S, et al. Base-free aerobic oxidation
                 homogeneous  5-hydroxymethylfurfural  oxidation  to  of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water
                 2,5-furandicarboxylic acid with Co/Mn/Br catalyst[J]. AIChE   catalyzed by functionalized carbon nanotube-supported Au-Pd alloy
                 Journal, 2017, 63(1): 162-171.                    nanoparticles[J]. ACS Catalysis, 2014, 4(7): 2175-2185.
            [35]  RAO K T V, ROGERS J L, SOUZANCHI S, et al. Inexpensive but   [52]  SHEN J S, CHEN H, CHEN K Q, et al. Atomic layer deposition of a
                 highly efficient Co-Mn mixed-oxide catalysts for selective oxidation   Pt-skin  catalyst  for  base-free  aerobic  oxidation  of
                 of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J].   5-hydroxymethylfurfural to  2,5-furandicarboxylic acid[J].  Industrial
                 ChemSusChem, 2018, 11(18): 3323-3334.             & Engineering Chemistry Research, 2018, 57(8): 2811-2818.
            [36]  ZHOU H,  XU H H, LIU  Y. Aerobic oxidation of   [53]  CHADDERDON D J, XIN L, QI J, et al. Electrocatalytic oxidation
                 5-hydroxymethylfurfural to  2,5-furandicarboxylic acid over   of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported
                 Co/Mn-lignin coordination complexes-derived catalysts[J]. Applied   Au and Pd bimetallic nanoparticles[J]. Green Chemistry, 2014, 16(8):
                 Catalysis B: Environmental, 2019, 244: 965-973.   3778-3786.
            [37]  XU S,  ZHOU P, ZHANG  Z H,  et al. Selective oxidation of   [54]  PARK M, GU M, KIM B S. Tailorable electrocatalytic
                 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using O 2 and   5-hydroxymethylfurfural oxidation and H 2 production: Architecture-
                 a photocatalyst of Co-thioporphyrazine bonded to g-C 3N 4[J]. Journal   performance relationship in bifunctional multilayer electrodes[J].
                 of the American Chemical Society, 2017, 139(41): 14775-14782.   ACS Nano, 2020,14(6): 6812-6822.
            [38]  HAYASHI E, YAMAGUCHI Y, KAMATA K, et al. Effect of MnO 2   [55]  LATSUZBAIA R, BISSELINK R, ANASTASOPOL A,  et al.
                 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to   Continuous electrochemical oxidation of biomass derived
                 2,5-furandicarboxylic acid[J]. Journal of the American Chemical   5-(hydroxymethyl)furfural into 2,5-furandicarboxylic acid[J]. Journal
                 Society, 2019, 141(2): 890-900.                   of Applied Electrochemistry, 2018, 48: 611-626.
            [39]  HAYASHI E, KOMANOYA T, KAMATA K, et al. Heterogeneously-   [56]  HUANG X, SONG J L, HUA M L, et al. Enhancing the electrocatalytic
                 catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-   activity of CoO for the oxidation of 5-hydroxymethylfurfural by
                 furandicarboxylic acid with MnO 2[J].  ChemSusChem, 2017, 10(4):   introducing oxygen vacancies[J]. Green Chemistry, 2020, 22(3): 843-
                 654-658.                                          849.
            [40]  YAN D X, XIN  J  Y,  SHI C  Y,  et al. Base-free  conversion of   [57]  PHAM H M, KANG M J, KIM K A, et al. Which electrode is better
                 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in ionic   for biomass valorization: Cu(OH) 2 or CuO nanowire[J]. Korean
                 liquids[J]. Chemical Engineering Journal, 2017, 323: 473-482.   Journal of Chemical Engineering, 2020, 37(3): 556-562.
            [41]  SAHA  B, GUPTA D, ABU-OMAR  M M,  et al. Porphyrin-based   [58]  ZHOU C M, DENG W P, WAN X Y, et al. Functionalized carbon
                 porous organic polymer-supported iron (Ⅲ) catalyst for efficient   nanotubes for biomass conversion: The base-free aerobic oxidation
                 aerobic  oxidation  of  5-hydroxymethyl-furfural  into  of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over
                 2,5-furandicarboxylic acid[J]. Journal of Catalysis, 2013, 299:   platinum supported on a carbon nanotube catalyst[J]. ChemCatChem,
                 316-320.                                          2015, 7(18): 2853-2863.
            [42]  CHEN R R, XIN J Y, YAN D X, et al. Highly efficient oxidation of   [59]  TAITT B J, NAM D H, CHOI K S. A comparative study of nickel,
                 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with heteropoly   cobalt, and iron oxyhydroxide anodes for the electrochemical
                 acids and ionic liquids[J]. ChemSusChem, 2019, 12(12): 2715-2724.   oxidation of 5-ydroxymethylfurfural to 2,5-furandicarboxylic acid[J].
            [43]  VERMA S, NADAGOUDA M N,  VARMA R S. Porous nitrogen-   ACS Catalysis, 2019, 9(1): 660-670.
                 enriched carbonaceous material from marine waste: Chitosan-derived   [60]  ZHANG M, LIU Y Q, LIU B Y, et al. Trimetallic NiCoFe-layered
                 carbon nitride catalyst for aerial oxidation of 5-hydroxymethylfurfu   double hydroxides nanosheets efficient for oxygen evolution and
                 ral (HMF) to 2,5-furandicarboxylic acid[J]. Scientific Reports, 2017,   highly selective oxidation of biomass-derived 5-hydroxymethylfurfural
                 7(1): 536.                                        [J]. ACS Catalysis, 2020, 10(9): 5179-5189.
            [44]  DAVIS S E, HOUK  L  R,  TAMARGO E C,  et al. Oxidation of   [61]  NAM D H, TAITT B J, CHOI K S. Copper-based catalytic anodes to
                 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts[J].   produce 2,5-furandicarboxylic acid, a biomass-derived alternative to
                 Catalysis Today, 2011, 160(1): 55-60.             terephthalic acid[J]. ACS Catalysis, 2018, 8(2): 1197-1206.
   85   86   87   88   89   90   91   92   93   94   95