Page 89 - 《精细化工》2020年第2期
P. 89
第 2 期 马 浩,等: 5-羟甲基糠醛及糖类定向转化制备 2,5-呋喃二甲酸的研究进展 ·291·
(1)针对不同的金属中心,设计不同的高性能 under neat conditions[J]. Chinese Chemical Letters, 2019, 30(12):
2304-2308.
载体,通过载体对金属的活性和稳定性进行调控,
[13] RATHOD P V, JADHAV V H. Efficient method for synthesis of
制备高活性催化剂,同时探索载体与活性中心之间 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose
构效关系和关联规律; using Pd/CC catalyst under aqueous conditions[J]. ACS Sustainable
Chemistry & Engineering, 2018, 6(5): 5766-5771.
(2)构建中性或者酸性多功能耦合催化剂体 [14] CHEN C L, LI X T, WANG L C, et al. Highly porous nitrogen- and
系,有利于 FDCA 产物的分离纯化,同时也可以实 phosphorus-codoped graphene: An outstanding support for Pd catalysts
现从糖类原料“一锅多步”转化为 FDCA 产品,降 to oxidize 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid
[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11300-
低生产过程中的操作复杂性和相应的时间成本、人 11306.
力成本等,最终提升其经济可行性; [15] MEI N, LIU B, ZHENG J D, et al. A novel magnetic palladium
catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural
(3)系统研究糖类原料在中性或者酸性多功能 into 2,5-furandicarboxylic acid in water[J]. Catalysis Science &
耦合催化剂体系中的反应耦合机制,深入探索原料 Technology, 2015, 5(6): 3194-3202.
在不同催化活性中心作用下的转化过程,获得糖类 [16] RASS H A, ESSAYEM N, BESSON M. Selective aqueous phase
oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
的“一锅多步”催化转化机理,为新型高效催化体 over Pt/C catalysts: Influence of the base and effect of bismuth
系的开发提供参考,同时为 FDCA 工业化应用提供 promotion[J]. Green Chemistry, 2013, 15(8): 2240-2251.
[17] RASS H A, ESSAYEM N, BESSON M. Selective aerobic oxidation
理论基础。
of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported
on TiO 2- and ZrO 2-based supports[J]. ChemSusChem, 2015, 8(7):
参考文献: 1206-1217.
[1] WANG X S (王贤松), WANG G Y (王公应). Research progress on [18] GONG W, ZHENG K K, JI P J. Platinum deposited on cerium
bio-based 2,5-furan dicarboxylate polyesters[J]. Fine Chemicals (精 coordination polymer for catalytic oxidation of hydroxymethylfurfural
细化工), 2019, 36(12): 2341-2352. producing 2,5-furandicarboxylic acid[J]. RSC Advances, 2017, 7(55):
[2] SAJID M M, ZHAO X B, LIU D H. Production of 2,5- 34776-34782.
furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): [19] SIANKEVICH S, SAVOGLIDIS G, FEI Z F, et al. A novel platinum
Recent progress focusing on the chemical-catalytic routes[J]. Green nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-
Chemistry, 2018, 20(24): 5427-5453. furandicarboxylic acid under mild conditions[J]. Journal of Catalysis,
[3] ZHENG L F (郑路凡), DU Z X (杜泽学), ZONG B N (宗保宁). 2014, 315: 67-74.
Progress of catalytic synthesis of typical 5-hydroxymethyl furfural [20] DAVIS S E, BENAVIDEZ A D, GOSSELINK R W, et al. Kinetics
derivatives[J]. Chemical Industry and Engineering Progress (化工进 and mechanism of 5-hydroxymethylfurfural oxidation and their
展), 2015, 34(6): 1511-1518. implications for catalyst development[J]. Journal of Molecular
[4] ZOU B (邹彬), CHEN X S (陈学珊), GUO J (郭静). The latest Catalysis A: Chemical, 2014, 388: 123-132.
research advance of oxidation conversion from HMF to FDCA[J]. [21] SAHU R, DHEPE P L. Synthesis of 2,5-furandicarboxylic acid by
Applied Chemical Industry (应用化工), 2016, 45(11): 2130-2134. the aerobic oxidation of 5-hydroxymethyl furfural over supported
[5] LAI J H (赖金花), ZHOU S L (周硕林), LIU K (刘凯), et al. metal catalysts[J]. Reaction Kinetics Mechanisms and Catalysis,
Advance on selective oxidation of 5-hydroxymethylfurfural into 2,5 2014, 112(1): 173-187.
-furandicarboxylic acid[J]. Speciality Petrochemicals (精细石油化 [22] ALBONETTI S, LOLLI A, MORANDI V, et al. Conversion of 5-
工), 2019, 36(2): 69-76. hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based
[6] CHEN G Y (陈光宇), WU L B (吴林波), LI B G (李伯耿). Progress catalysts: Optimization of active phase and metal-support interaction
in the synthesis of bio-based monomer 2,5-furandicarboxylic acid [J]. Applied Catalysis B: Environmental, 2015, 163: 520-530.
through 5-hydroxymethylfurfural route[J]. Chemical Industry and [23] LI Q Q, WANG H Y, TIAN Z P, et al. Selective oxidation of 5-
Engineering Progress (化工进展), 2018, 37(8): 278-286. hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au/CeO 2
[7] CHANG M (常萌), HUANG G B (黄关葆), XU M J (徐曼嘉). catalysts: The morphology effect of CeO 2[J]. Catalysis Science &
Preparation of bio-based 2,5-furandicarboxylic acid[J]. Plastics (塑 Technology, 2019, 9(7): 1570-1580.
料), 2014, 43(1): 75-77. [24] MEGIAS-SAYAGO C, CHAKAROVA K, PENKOVA A, et al.
[8] ZHANG J H, LIANG Q D, XIE W X, et al. An eco-friendly method Understanding the role of the acid sites in 5-hydroxymethylfurfural
to get a bio-based dicarboxylic acid monomer 2,5-furandicarboxylic oxidation to 2,5-furandicarboxylic acid reaction over gold catalysts:
acid and its application in the synthesis of poly(hexylene 2,5- Surface investigation on Ce xZr 1-xO 2 compounds[J]. ACS Catalysis,
furandicarboxylate) (PHF)[J]. Polymers, 2019, 11(2): 197. 2018, 8(12): 11154-11164.
[9] ZHANG S, ZHANG L. A facile and effective method for preparation [25] CASANOVA O, IBORRA S, CORMA A. Biomass into chemicals:
of 2,5-furandicarboxylic acid via hydrogen peroxide direct oxidation Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-
of 5-hydroxymethylfurfural[J]. Polish Journal of Chemical Technology, furandicarboxylic acid with gold nanoparticle catalysts[J].
2017, 19(1): 11-16. ChemSusChem, 2009, 2(12): 1138-1144.
[10] CARDIEL A C, TAITT B J, CHOI K S. Stabilities, regeneration [26] SANG B L, LI J, TIAN X Q, et al. Selective aerobic oxidation of the
pathways, and electrocatalytic properties of nitroxyl radicals for the 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over gold
electrochemical oxidation of 5-hydroxymethylfurfural[J]. ACS nanoparticles supported on graphitized carbon: study on reaction
Sustainable Chemistry & Engineering, 2019, 7(13): 11138-11149. pathways[J]. Molecular Catalysis, 2019, 470: 67-74.
[11] ZHANG L, LUO X L, LI Y B. A new approach for the aerobic [27] ZHENG L F, ZHAO J Q, DU Z X, et al. Efficient aerobic oxidation
oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C
without using transition metal catalysts[J]. Journal of Energy catalysts[J]. Science China-Chemistry, 2017, 60(7): 950-957.
Chemistry, 2018, 27(1): 243-249. [28] DA FONSECA FERREIRA A D, DE MELLO M D, PEREIRA DA
[12] LIU K J, ZENG T Y, ZENG J L, et al. Solvent-dependent selective SILVA M A. Catalytic oxidation of 5-hydroxymethylfurfural to 2,5-
oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid furandicarboxylic acid over Ru/Al 2O 3 in a trickle-bed reactor[J].