Page 89 - 《精细化工》2020年第2期
P. 89

第 2 期              马   浩,等: 5-羟甲基糠醛及糖类定向转化制备 2,5-呋喃二甲酸的研究进展                              ·291·


                (1)针对不同的金属中心,设计不同的高性能                              under neat conditions[J]. Chinese  Chemical  Letters, 2019, 30(12):
                                                                   2304-2308.
            载体,通过载体对金属的活性和稳定性进行调控,
                                                               [13]  RATHOD P V, JADHAV V H. Efficient method for synthesis of
            制备高活性催化剂,同时探索载体与活性中心之间                                 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose
            构效关系和关联规律;                                             using Pd/CC catalyst under aqueous conditions[J]. ACS Sustainable
                                                                   Chemistry & Engineering, 2018, 6(5): 5766-5771.
                (2)构建中性或者酸性多功能耦合催化剂体                           [14]  CHEN C L, LI X T, WANG L C, et al. Highly porous nitrogen- and
            系,有利于 FDCA 产物的分离纯化,同时也可以实                              phosphorus-codoped graphene: An outstanding support for Pd catalysts
            现从糖类原料“一锅多步”转化为 FDCA 产品,降                              to oxidize 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid
                                                                   [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11300-
            低生产过程中的操作复杂性和相应的时间成本、人                                 11306.
            力成本等,最终提升其经济可行性;                                   [15]  MEI N, LIU B, ZHENG J D,  et al. A novel magnetic palladium
                                                                   catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural
                (3)系统研究糖类原料在中性或者酸性多功能                              into 2,5-furandicarboxylic acid in water[J]. Catalysis Science &
            耦合催化剂体系中的反应耦合机制,深入探索原料                                 Technology, 2015, 5(6): 3194-3202.
            在不同催化活性中心作用下的转化过程,获得糖类                             [16]  RASS H A,  ESSAYEM N, BESSON M. Selective aqueous  phase
                                                                   oxidation of  5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
            的“一锅多步”催化转化机理,为新型高效催化体                                 over Pt/C catalysts: Influence of the base and effect of bismuth
            系的开发提供参考,同时为 FDCA 工业化应用提供                              promotion[J]. Green Chemistry, 2013, 15(8): 2240-2251.
                                                               [17]  RASS H A, ESSAYEM N, BESSON M. Selective aerobic oxidation
            理论基础。
                                                                   of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported
                                                                   on TiO 2- and ZrO 2-based supports[J]. ChemSusChem, 2015, 8(7):
            参考文献:                                                  1206-1217.
            [1]   WANG X S (王贤松), WANG G Y (王公应). Research progress on   [18]  GONG W,  ZHENG K K, JI P J. Platinum deposited  on cerium
                 bio-based 2,5-furan dicarboxylate polyesters[J]. Fine Chemicals (精  coordination polymer for catalytic oxidation of hydroxymethylfurfural
                 细化工), 2019, 36(12): 2341-2352.                    producing 2,5-furandicarboxylic acid[J]. RSC Advances, 2017, 7(55):
            [2]   SAJID M M,  ZHAO  X B,  LIU D  H. Production of 2,5-   34776-34782.
                 furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF):   [19]  SIANKEVICH S, SAVOGLIDIS G, FEI Z F, et al. A novel platinum
                 Recent progress focusing on the chemical-catalytic routes[J]. Green   nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-
                 Chemistry, 2018, 20(24): 5427-5453.               furandicarboxylic acid under mild conditions[J]. Journal of Catalysis,
            [3]   ZHENG  L F (郑路凡), DU  Z X (杜泽学), ZONG B N (宗保宁).   2014, 315: 67-74.
                 Progress  of catalytic synthesis of typical 5-hydroxymethyl furfural   [20]  DAVIS S E, BENAVIDEZ A D, GOSSELINK R W, et al. Kinetics
                 derivatives[J]. Chemical Industry and Engineering Progress (化工进  and mechanism of 5-hydroxymethylfurfural oxidation  and their
                 展), 2015, 34(6): 1511-1518.                       implications for catalyst development[J]. Journal of Molecular
            [4]  ZOU B (邹彬), CHEN X S (陈学珊), GUO J (郭静). The  latest   Catalysis A: Chemical, 2014, 388: 123-132.
                 research advance of oxidation conversion  from HMF to  FDCA[J].   [21]  SAHU R,  DHEPE  P L. Synthesis of 2,5-furandicarboxylic  acid by
                 Applied Chemical Industry (应用化工), 2016, 45(11): 2130-2134.   the aerobic oxidation of 5-hydroxymethyl furfural  over supported
            [5]   LAI J H (赖金花), ZHOU S  L (周硕林), LIU K (刘凯),  et al.   metal catalysts[J]. Reaction Kinetics  Mechanisms and Catalysis,
                 Advance on selective oxidation of 5-hydroxymethylfurfural into 2,5   2014, 112(1): 173-187.
                 -furandicarboxylic  acid[J]. Speciality  Petrochemicals (精细石油化  [22]  ALBONETTI S, LOLLI A, MORANDI V,  et al. Conversion of 5-
                 工), 2019, 36(2): 69-76.                           hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based
            [6]   CHEN G Y (陈光宇), WU L B (吴林波), LI B G (李伯耿). Progress   catalysts: Optimization of active phase and metal-support interaction
                 in the synthesis of bio-based monomer 2,5-furandicarboxylic acid   [J]. Applied Catalysis B: Environmental, 2015, 163: 520-530.
                 through  5-hydroxymethylfurfural  route[J]. Chemical Industry and   [23]  LI Q Q, WANG H  Y,  TIAN Z P,  et al. Selective oxidation  of  5-
                 Engineering Progress (化工进展), 2018, 37(8): 278-286.   hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au/CeO 2
            [7]   CHANG M (常萌), HUANG G  B (黄关葆), XU M J (徐曼嘉).    catalysts: The morphology effect of  CeO 2[J]. Catalysis Science &
                 Preparation  of  bio-based 2,5-furandicarboxylic acid[J]. Plastics (塑  Technology, 2019, 9(7): 1570-1580.
                 料), 2014, 43(1): 75-77.                       [24]  MEGIAS-SAYAGO C, CHAKAROVA K, PENKOVA  A,  et al.
            [8]   ZHANG J H, LIANG Q D, XIE W X, et al. An eco-friendly method   Understanding the role of the acid sites in 5-hydroxymethylfurfural
                 to get a bio-based dicarboxylic acid monomer 2,5-furandicarboxylic   oxidation to 2,5-furandicarboxylic acid reaction over gold catalysts:
                 acid and its application in  the synthesis  of poly(hexylene 2,5-   Surface investigation on Ce xZr 1-xO 2 compounds[J]. ACS Catalysis,
                 furandicarboxylate) (PHF)[J]. Polymers, 2019, 11(2): 197.   2018, 8(12): 11154-11164.
            [9]   ZHANG S, ZHANG L. A facile and effective method for preparation   [25]  CASANOVA O, IBORRA S,  CORMA A. Biomass into chemicals:
                 of 2,5-furandicarboxylic acid via hydrogen peroxide direct oxidation   Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-
                 of 5-hydroxymethylfurfural[J]. Polish Journal of Chemical Technology,   furandicarboxylic acid with gold nanoparticle catalysts[J].
                 2017, 19(1): 11-16.                               ChemSusChem, 2009, 2(12): 1138-1144.
            [10]  CARDIEL  A C, TAITT B J,  CHOI  K S. Stabilities, regeneration   [26]  SANG B L, LI J, TIAN X Q, et al. Selective aerobic oxidation of the
                 pathways, and electrocatalytic properties of nitroxyl radicals for the   5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over gold
                 electrochemical oxidation of 5-hydroxymethylfurfural[J]. ACS   nanoparticles supported  on  graphitized carbon: study on reaction
                 Sustainable Chemistry & Engineering, 2019, 7(13): 11138-11149.   pathways[J]. Molecular Catalysis, 2019, 470: 67-74.
            [11]  ZHANG L,  LUO  X L, LI Y B. A new approach for the aerobic   [27]  ZHENG L F, ZHAO J Q, DU Z X, et al. Efficient aerobic oxidation
                 oxidation of  5-hydroxymethylfurfural to 2,5-furandicarboxylic acid   of 5-hydroxymethylfurfural to  2,5-furandicarboxylic acid on Ru/C
                 without using transition metal  catalysts[J]. Journal of Energy   catalysts[J]. Science China-Chemistry, 2017, 60(7): 950-957.
                 Chemistry, 2018, 27(1): 243-249.              [28]  DA FONSECA FERREIRA A D, DE MELLO M D, PEREIRA DA
            [12]  LIU K J, ZENG T Y, ZENG J L, et al. Solvent-dependent selective   SILVA M A. Catalytic oxidation of 5-hydroxymethylfurfural to 2,5-
                 oxidation of  5-hydroxymethylfurfural to 2,5-furandicarboxylic acid   furandicarboxylic acid over Ru/Al 2O 3 in a trickle-bed reactor[J].
   84   85   86   87   88   89   90   91   92   93   94