Page 145 - 《精细化工》2021年第3期
P. 145
第 3 期 丁佳晶,等: WO 3 /Nb 2 O 5 固体酸催化果糖制备 5-羟甲基糠醛 ·565·
to biofuels with bifunctional solid catalytic materials[J]. Progress in 2020, 150: 2599-2606.
Energy and Combustion Science, 2016, 55: 98-194. [17] REDDY B M, PATILl M K, REDDY B T. An efficient and ecofriendly
[5] AGARWAL B, KAILASAM K, SANGWAN R S, et al. Traversing WO x-ZrO 2 solid acid catalyst for classical Mannich reaction [J].
the history of solid catalysts for heterogeneous synthesis of Catalysis Letters, 2008, 125(1/2): 97-103.
5-hydroxymethylfurfural from carbohydrate sugars: A review[J]. [18] YE L (叶林), Synthesis and application of mesoporous metal oxides
Renewable and Sustainable Energy Reviews, 2018, 82: 2408-2425. and 3D ordered superlattice array materials[D]. Shanghai: Fudan
[6] TAN-SOETEDJO J N M, VANDE BOVENKAMP H H, ABDILLA University (复旦大学), 2012.
R M, et al. Experimental and kinetic modeling studies on the [19] EMEIS C A. Determination of integrated molar extinction coefficients for
conversion of sucrose to levulinic acid and 5-hydroxymethylfurfural infrared absorption bands of pyridine adsorbed on solid acid
using sulfuric acid in water[J]. Industrial & Engineering Chemistry catalysts[J].Journal of Catalysis, 1993, 141(2): 347-354.
Research, 2017, 56(45): 13229-13240. [20] BARTON D G, SOLED S L, IGLESIA E. Solid acid catalysts based on
[7] ROMAN-LESHKOV Y, CHHEDA J N, DUMESIC J A. Phase supported tungsten oxides[J]. Topics in Catalysis, 1998, 6(1): 87-99.
modifiers promote efficient production of hydroxymethylfurfural [21] KIM Y K, ROUSSEAU R, KAY B D, et al. Catalytic dehydration of
from fructose[J]. Science, 2006, 312(5782): 1933-1937. 2-propanol on (WO 3) 3 clusters on TiO 2(110)[J]. Journal of the
[8] QI X H, WATANABE M, AIDA T M, et al. Sulfated zirconia as a American Chemical Society, 2008, 130(15): 5059-5061.
solid acid catalyst for the dehydration of fructose to 5- [22] ZHOU W, SOULTANIDIS N, XU H, et al. Nature of catalytically
hydroxymethylfurfural[J]. Catalysis Communications, 2009, 10(13): active sites in the supported WO 3/ZrO 2 solid acid system: Acurrent
1771-1775. perspective[J]. ACS Catalysis, 2017,7(3): 2181-2198.
[9] WATANABE M, AIZAWA Y, LIDA T, et al. Catalytic glucose and [23] TAKAQAKI A,OHARA M,NISHIMURA S, et al. A one-pot reaction
fructose conversions with TiO 2 and ZrO 2 in water at 473 K: Relationship for biorefinery: Combination of solid acid and base catalysts for direct
between reactivity and acid-base property determined by TPD production of 5-hydroxymethylfurfural from saccharides[J]. ChemInform,
measurement[J]. Applied Catalysis A-General, 2005, 295(2): 150-156. 2009, 41: 6276-6278.
[10] VENTURA M, DIBENEDETTO A, ARESTA M. Heterogeneous [24] YANG F L (杨凤丽), YAO P F (姚鹏飞), WANG S W (王树巍).
catalysts for the selective aerobic oxidation of 5-hydroxymethylfurfural to Preparation of 5-hydromethylfurfural from glucose catalyzed by
added value products in water[J]. Inorganica Chimica Acta, 2018, γ-Al 2O 3 modified by H 3PO 4[J]. Journal of Chemical Engineering of
470: 11-21. Chinese Universities (高校化学工程学报), 2019, 33(4): 1012-1017.
[11] VIEIRA J L, ALMEIDA-TRAPP M, MITHOFER A, et al. Rationalizing [25] KREISSL H T, NAKAGAWA K, PENG Y K, et al. Niobium oxides:
the conversion of glucose and xylose catalyzed by a combination of Correlation of acidity with structure and catalytic performance in
Lewis and Bronsted acids[J]. Catalysis Today, 2020, 344: 92-101. sucrose conversion to 5-hydroxymethylfurfural[J]. Journal of
[12] CAIO T, ATSUSHI T, AI I, et al. Highly active mesoporous Nb-W Catalysis, 2016, 338: 329-339.
oxide solid-acid catalyst[J]. Angewandte Chemie, 2010, 49(6): [26] MATHARUA S, AHMED S, ALMONTHERY B, et al. Starbon/
1128-1132. high-amylose corn starch-supported n-heterocyclic carbene-iron(Ⅲ)
[13] GUERRERO-PEREZ M O. The fascinating effect of niobium as catalyst for conversion of fructose into 5-hydroxymethylfurfural[J].
catalytic promoting agent[J]. Catalysis Today, 2020, 354: 19-25. ChemSusChem, 2018, 11(4): 716-725.
[14] WIESFEID J J, GAQUERE R, HENSEN E J M. Mesoporous doped [27] QI X H, WATANABE M, AIDA T M, et al. Catalytic dehydration of
tungstenoxide for glucose dehydration to 5-hydroxymethylfurfural[J]. fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-
ACS Sustainable Chemistry & Engineering, 2019,7(8): 7552-7562. aqueous system by microwave heating[J]. Green Chemistry, 2008,
[15] JIA J (贾进), CHENG L (程璐), ZHANG C (张澄), et al. One-pot 10(7): 799-805.
catalytic preparation of 5-hydroxymethylfurural from glucose on [28] RAVEENDRA G, SURENDAR M, PRASAD P S S. Selective
mesoporous niobium phosphate[J]. Fine Chemicals (精细化工), conversion of fructose to 5-hydroxymethylfurfural over WO 3/SnO 2
2018, 35(2): 255-260, 290. catalysts[J]. New Journal of Chemistry, 2017, 41(16): 8520-8529.
[16] HUANG F M, JIANG T Y, DAI H Y, et al. Transformation of [29] SONG Y, ZHANG L L, LI G D, et al. ZSM-5 extrudates modified
glucose to 5-hydroxymethylfurfural over regenerated cellulose with phosphorus as a super effective MTP catalyst: Impact of the
supported Nb 2O 5•nH 2O in aqueous solution[J]. Catalysis Letters, acidity on binder[J]. Fuel Processing Technology, 2017, 168: 105-115.
(上接第 524 页) photocatalytic degradation of methyl orange imprinted composite
membranes using TiO 2/calcium alginate hydrogel as matrix[J].
[20] ZHANG M, LI Y R, WANG L, et al. Compatibility and mechanical Catalysis Today, 2014, 236: 127-134.
properties of gelatin-filled polybutylene succinate composites[J]. [25] BADRANOVA G U, GOTOVTSEV P M, ZUBAVICHUS Y V, et al.
Journal of Applied Polymer Science, 2019, 137(29): 48881. Biopolymer-based hydrogels for encapsulation of photocatalytic TiO 2
[21] UHLÍŘOVÁ T, GREGOROVÁ E, PABST W, et al. Preparation of nanoparticles prepared by the freezing/thawing method[J]. Journal of
cellular alumina ceramics via biological foaming with yeast and its Molecular Liquids, 2016, 223: 16-20.
microstructural characterization via stereological relations[J]. Journal [26] WANG Y Q (王怡琴), XIE X H (谢学辉), ZHENG X L (郑秀林), et
of the European Ceramic Society, 2015, 35(1): 187-196. al. Research progress of activators in promoting microbial degradation of
[22] ZHOU J H, HAO B Z, WANG L B, et al. Preparation and azo, anthraquinone and triphenylmethanedyes[J]. Chemical Industry
characterization of nano-TiO 2/chitosan/poly(N-isopropylacrylamide) and Engineering Progress (化工进展), 2019, 38(6): 2968-2976.
composite hydrogel and its application for removal of ionic dyes[J]. [27] YUE Y Y, WANG X H, HAN J Q, et al. Effects of nanocellulose on
Separation and Purification Technology, 2017, 176: 193-199. sodium alginate/polyacrylamide hydrogel: Mechanical properties and
[23] THOMAS M, NAIKOO G A, SHEIKH M U D, et al. Effective adsorption-desorption capacities[J]. Carbohydrate Polymers, 2019,
photocatalytic degradation of congo red dye using alginate/ 206: 289-301.
carboxymethyl cellulose/TiO 2 nanocomposite hydrogel under direct [28] PANÃO C O, CAMPOS E L S, LIMA H H C, et al. Ultra-absorbent
sunlight irradiation[J]. Journal Photochemistry and Photobiology A: hybrid hydrogel based on alginate and SiO 2 microspheres: A
Chemistry, 2016, 327: 33-43. high-water-content system for removal of methylene blue[J]. Journal
[24] ZHAO K Y, FENG L Z, LIN H Q, et al. Adsorption and of Molecular Liquids, 2019, 276: 204-213.