Page 145 - 《精细化工》2021年第3期
P. 145

第 3 期                    丁佳晶,等: WO 3 /Nb 2 O 5 固体酸催化果糖制备 5-羟甲基糠醛                         ·565·


                 to biofuels with bifunctional solid catalytic materials[J]. Progress in   2020, 150: 2599-2606.
                 Energy and Combustion Science, 2016, 55: 98-194.   [17]  REDDY B M, PATILl M K, REDDY B T. An efficient and ecofriendly
            [5]   AGARWAL B, KAILASAM K, SANGWAN R S, et al. Traversing   WO x-ZrO 2  solid acid catalyst for classical Mannich reaction [J].
                 the history of solid catalysts for heterogeneous synthesis of   Catalysis Letters, 2008, 125(1/2): 97-103.
                 5-hydroxymethylfurfural from  carbohydrate sugars: A  review[J].   [18]  YE L (叶林), Synthesis and application of mesoporous metal oxides
                 Renewable and Sustainable Energy Reviews, 2018, 82: 2408-2425.   and 3D ordered superlattice array  materials[D]. Shanghai: Fudan
            [6]   TAN-SOETEDJO J N M, VANDE BOVENKAMP H H, ABDILLA   University (复旦大学), 2012.
                 R M,  et al. Experimental and kinetic  modeling studies on the   [19]  EMEIS C A. Determination of integrated molar extinction coefficients for
                 conversion of sucrose to levulinic acid and 5-hydroxymethylfurfural   infrared absorption bands of  pyridine adsorbed  on solid acid
                 using sulfuric acid in water[J]. Industrial & Engineering Chemistry   catalysts[J].Journal of Catalysis, 1993, 141(2): 347-354.
                 Research, 2017, 56(45): 13229-13240.          [20]  BARTON D G, SOLED S L, IGLESIA E. Solid acid catalysts based on
            [7]   ROMAN-LESHKOV Y,  CHHEDA J N,  DUMESIC J A. Phase   supported tungsten oxides[J]. Topics in Catalysis, 1998, 6(1): 87-99.
                 modifiers promote efficient production of hydroxymethylfurfural   [21]  KIM Y K, ROUSSEAU R, KAY B D, et al. Catalytic dehydration of
                 from fructose[J]. Science, 2006, 312(5782): 1933-1937.   2-propanol on  (WO 3) 3 clusters on TiO 2(110)[J]. Journal of the
            [8]   QI X H, WATANABE M, AIDA T M, et al. Sulfated zirconia as a   American Chemical Society, 2008, 130(15): 5059-5061.
                 solid acid catalyst for the dehydration  of fructose to 5-   [22]  ZHOU W, SOULTANIDIS N, XU  H,  et al. Nature of catalytically
                 hydroxymethylfurfural[J]. Catalysis Communications, 2009, 10(13):   active sites in the supported WO 3/ZrO 2 solid acid system: Acurrent
                 1771-1775.                                        perspective[J]. ACS Catalysis, 2017,7(3): 2181-2198.
            [9]   WATANABE M, AIZAWA Y, LIDA T, et al. Catalytic glucose and   [23]  TAKAQAKI A,OHARA M,NISHIMURA S, et al. A one-pot reaction
                 fructose conversions with TiO 2 and ZrO 2 in water at 473 K: Relationship   for biorefinery: Combination of solid acid and base catalysts for direct
                 between reactivity and acid-base property determined by TPD   production of 5-hydroxymethylfurfural from saccharides[J]. ChemInform,
                 measurement[J]. Applied Catalysis A-General, 2005, 295(2): 150-156.   2009, 41: 6276-6278.
            [10]  VENTURA M, DIBENEDETTO A,  ARESTA M. Heterogeneous   [24]  YANG F L (杨凤丽),  YAO P F (姚鹏飞), WANG S W (王树巍).
                 catalysts for the selective aerobic oxidation of 5-hydroxymethylfurfural to   Preparation of 5-hydromethylfurfural from glucose catalyzed by
                 added value  products in water[J]. Inorganica Chimica Acta, 2018,   γ-Al 2O 3 modified by H 3PO 4[J]. Journal of Chemical Engineering of
                 470: 11-21.                                       Chinese Universities (高校化学工程学报), 2019, 33(4): 1012-1017.
            [11]  VIEIRA J L, ALMEIDA-TRAPP M, MITHOFER A, et al. Rationalizing   [25]  KREISSL H T, NAKAGAWA K, PENG Y K, et al. Niobium oxides:
                 the conversion of glucose and xylose catalyzed by a combination of   Correlation of acidity with structure and catalytic performance in
                 Lewis and Bronsted acids[J]. Catalysis Today, 2020, 344: 92-101.   sucrose conversion to 5-hydroxymethylfurfural[J]. Journal of
            [12]  CAIO T, ATSUSHI T, AI I, et al. Highly active mesoporous Nb-W   Catalysis, 2016, 338: 329-339.
                 oxide solid-acid catalyst[J]. Angewandte Chemie, 2010, 49(6):   [26]  MATHARUA S, AHMED S,  ALMONTHERY B, et  al. Starbon/
                 1128-1132.                                        high-amylose corn starch-supported n-heterocyclic carbene-iron(Ⅲ)
            [13]  GUERRERO-PEREZ M O.  The fascinating effect of niobium  as   catalyst for conversion of fructose into 5-hydroxymethylfurfural[J].
                 catalytic promoting agent[J]. Catalysis Today, 2020, 354: 19-25.   ChemSusChem, 2018, 11(4): 716-725.
            [14]  WIESFEID J J, GAQUERE R, HENSEN E J M. Mesoporous doped   [27]  QI X H, WATANABE M, AIDA T M, et al. Catalytic dehydration of
                 tungstenoxide for glucose dehydration to 5-hydroxymethylfurfural[J].   fructose  into  5-hydroxymethylfurfural  by ion-exchange resin in mixed-
                 ACS Sustainable Chemistry & Engineering, 2019,7(8): 7552-7562.   aqueous system by microwave heating[J]. Green Chemistry, 2008,
            [15]  JIA J (贾进), CHENG L (程璐), ZHANG C (张澄), et al. One-pot   10(7): 799-805.
                 catalytic preparation of 5-hydroxymethylfurural from glucose on   [28]  RAVEENDRA G,  SURENDAR M,  PRASAD P S S. Selective
                 mesoporous niobium phosphate[J]. Fine Chemicals (精细化工),   conversion of fructose to 5-hydroxymethylfurfural over WO 3/SnO 2
                 2018, 35(2): 255-260, 290.                        catalysts[J]. New Journal of Chemistry, 2017, 41(16): 8520-8529.
            [16]  HUANG F M, JIANG T  Y, DAI H Y,  et al. Transformation of   [29]  SONG Y, ZHANG L L, LI G D, et al. ZSM-5 extrudates modified
                 glucose to 5-hydroxymethylfurfural over regenerated  cellulose   with phosphorus as a super effective MTP catalyst: Impact of the
                 supported Nb 2O 5•nH 2O in aqueous solution[J]. Catalysis Letters,   acidity on binder[J]. Fuel Processing Technology, 2017, 168: 105-115.


            (上接第 524 页)                                            photocatalytic degradation of methyl  orange imprinted composite
                                                                   membranes using TiO 2/calcium alginate hydrogel as matrix[J].
            [20]  ZHANG M, LI Y R, WANG L, et al. Compatibility and mechanical   Catalysis Today, 2014, 236: 127-134.
                 properties of gelatin-filled  polybutylene succinate composites[J].   [25]  BADRANOVA G U, GOTOVTSEV P M, ZUBAVICHUS Y V, et al.
                 Journal of Applied Polymer Science, 2019, 137(29): 48881.   Biopolymer-based hydrogels for encapsulation of photocatalytic TiO 2
            [21] UHLÍŘOVÁ T, GREGOROVÁ E, PABST W, et al. Preparation of   nanoparticles prepared by the freezing/thawing method[J]. Journal of
                 cellular alumina ceramics via biological foaming with yeast and its   Molecular Liquids, 2016, 223: 16-20.
                 microstructural characterization via stereological relations[J]. Journal   [26]  WANG Y Q (王怡琴), XIE X H (谢学辉), ZHENG X L (郑秀林), et
                 of the European Ceramic Society, 2015, 35(1): 187-196.     al. Research progress of activators in promoting microbial degradation of
            [22]  ZHOU J H, HAO B Z, WANG  L B,  et al. Preparation and   azo, anthraquinone and triphenylmethanedyes[J]. Chemical Industry
                 characterization of nano-TiO 2/chitosan/poly(N-isopropylacrylamide)   and Engineering Progress (化工进展), 2019, 38(6): 2968-2976.
                 composite hydrogel and its application for removal of ionic dyes[J].   [27]  YUE Y Y, WANG X H, HAN J Q, et al. Effects of nanocellulose on
                 Separation and Purification Technology, 2017, 176: 193-199.       sodium alginate/polyacrylamide hydrogel: Mechanical properties and
            [23]  THOMAS M, NAIKOO G A, SHEIKH M U D,  et al. Effective   adsorption-desorption capacities[J]. Carbohydrate Polymers, 2019,
                 photocatalytic degradation of congo red dye using alginate/   206: 289-301.
                 carboxymethyl cellulose/TiO 2  nanocomposite hydrogel under direct   [28]  PANÃO C O, CAMPOS E L S, LIMA H H C, et al. Ultra-absorbent
                 sunlight irradiation[J]. Journal Photochemistry and Photobiology A:   hybrid hydrogel based on alginate and SiO 2 microspheres: A
                 Chemistry, 2016, 327: 33-43.                      high-water-content system for removal of methylene blue[J]. Journal
            [24]  ZHAO  K Y, FENG L Z, LIN H Q,  et al. Adsorption and   of Molecular Liquids, 2019, 276: 204-213.
   140   141   142   143   144   145   146   147   148   149   150