Page 126 - 《精细化工》2021年第5期
P. 126
·980· 精细化工 FINE CHEMICALS 第 38 卷
中,高质量浓度(100 mg/L)的NEPP对增强RAW 264.7 small-size citrus: Kumquat and calamondin[J]. Journal of Food and
Drug Analysis, 2017, 25(1): 162-175.
巨噬细胞吞噬能力最为显著(p<0.05)。结果表明,金 [13] BARRECA D, GATTUSO G, BELLOCCO E, et al. Flavanones:
Citrus phytochemical with health-promoting properties[J]. BioFactors,
柑 NEPP 能够直接作用于 LPS 刺激的 RAW 264.7 细 2017, 43(4): 495-506.
胞,提高其吞噬能力,从而保护机体免受抗原感染。 [14] ROOWI S, CROZIER A. Flavonoids in tropical citrus species[J].
Journal of Agricultural and Food Chemistry, 2011, 59(22): 12217-12225.
[15] LOU S N, YI C L, HSU Y S. Phenolic content, antioxidant activity
3 结论 and effective compounds of Kumquat extracted by different solvents[J].
Food Chemistry, 2016, 197: 1-6.
[16] PEREZ-JIMENEZ J, DIAZ-RUBIO M E, SAURA-CALIXTO F.
(1)通过 PEF 法提取金柑 NEPP,经响应面优 Non-extractable polyphenols, a major dietary antioxidant: Occurrence,
metabolic fate and health effects[J]. Nutrition Research Reviews,
化后得到提取金柑 NEPP 的最佳条件为:脉冲数 250 2013, 26(2): 118-129.
次,场强 11.8 kV/cm,液料比 0.34∶1(L∶g)。在此条 [17] YANG C Y (杨聪颖), LUO Y L (骆亚丽), GUO S Y (郭时印), et al.
Optimization of extraction process of polyphenols from Kumquat by
件下,得到金柑 NEPP 含量为 1.6382 mg GAE/g DW。 response surface methodology[J]. Modern Food Science and
(2)采用 MTT 法检测金柑 NEPP 对 RAW 264.7 Technology (现代食品科技), 2018, 34(5): 174-181.
[18] ZOU Y P, CHANG S K C, GU Y, et al. Antioxidant activity and
吞噬细胞生长的影响,结果表明,当金柑 NEPP 质 phenolic compositions of lentil (Lens culinaris var. Morton) extract
and its fractions[J]. Journal of Agricultural and Food Chemistry,
量浓度低于 100 mg/L 时对细胞没有毒性作用;采用 2011, 59(6): 2268-2276.
中性红比色法以及 Griess 法检测吞噬能力和 NO 生 [19] LI Y Z (李艳姿), ZHANG W Z (张伟哲), TANG L M (汤立民), et al.
Rapid extraction of lignans from the stems of Schisandra chinensis
成量,结果表明,金柑 NEPP 可抑制 RAW 264.7 吞 by response surface methodology combined with high-voltage pulsed
噬细胞分泌 NO 和增加吞噬能力,说明金柑 NEPP electric field[J]. Journal of Jilin Agricultural University, 2018, 40(5):
589-595.
具有良好的免疫调节作用。 [20] SALLY E K, NADIA B, NIKOLAI L et al. Pulsed electric field
treatment of citrus fruits: Improvement of juice and polyphenols
(3)根据上述结果推测,金柑 NEPP 在一定程 extraction[J]. Innovative Food Science and Emerging Technologies,
度上有减缓炎症的作用,对治疗肠炎及抑制结肠癌 2018, 46: 153-161.
[21] WANG J J (王婧杰), MA F M (马凤鸣), MU L Q (穆立蔷).
可能有一定的效果,本课题组将在后续实验中进行 Optimization of ultrasound-assisted extraction of flavonoids in bark
体外模拟消化及动物实验,为药食同源的深入开发 of Tilia amurensis Rupr. by response surface method[J]. Non-wood
Forest Research, 2012, 30(4): 113-118.
利用提供一定参考。 [22] LI B (李斌), LEI Y (雷月), MENG X J (孟宪军), et al. Optimization
of ultrasonic-assisted extraction of polyphenols from haskap berries
参考文献: (Lonicera caerulea L.) using response surface methodology and their
antioxidant capacity[J] .Food Science (食品科学), 2015, 36(22): 33-39.
[1] LI L (李丽), SHENG J F (盛金凤), SUN J (孙健), et al. Review on [23] MENON L N, SATHEESH S K K, PANICKER S P, et al.
nutritional value and comprehensive utilization of Kumquat and present Antiproliferative activity of caged xant hones from the leaves of
situation[J]. The Food Industry (食品工业), 2015, 36(9): 220-224. Garcinia wightii T. Anderson[J]. Fitoterapia, 2020, 143: 104592.
[2] ZHANG J X ( 张佳欣 ). Advances in the synergistic antioxidant [24] AHMADIAN S, BARAR J, SAEI A A, et al. Cellular toxicity of
properties of polyphenols[J]. Modern Agriculture Research (现代农 nanogeno medicine in MCF-7 cell line: MTT assay[J]. Journal of
业研究), 2020, 49(1): 117-118, 121. Visualized Experiments, 2009, (26): 1191.
[3] YAN H Q (阎海青), QU J R (曲静然), CHEN X Y (陈相艳), et al. [25] ZHENG Y R (郑怡然), WEI W (韦玮), YANG X W (杨秀伟).
Optimization of alkali extraction for non-extractable polyphenols Chuanliguspirolide, a new butylphthalide derivative from Chuanxiong
from blueberries by response surface methodology[J]. Food Science Rhizoma and its inhibition on NO production in LPS-activated RAW
and Technology (食品科技), 2013, 38(11): 203-209. 264.7 and BV2 cell lines[J]. Chinese Traditional and Herbal Drugs
[4] DENG Y N (邓雅妮), GUO S Y (郭时印), XIAO H (肖航), et al. (中草药), 2018, 49(7): 1497-1503.
Research progress in non-extractable polyphenols in fruits and [26] WEN P (闻平), HE Y (何艳), YE Q L (叶庆林), et al. The proliferation
vegetables[J]. Farm Products Processing (农产品加工), 2018, (20): 62-65. activity of cells was determined by neutral red colorimetry[J]. Journal of
[5] CHEN K, MAINES M D. Nitric oxide induces heme oxygenase-1 Zhenjiang Medical College(镇江医学院学报), 2000, 10(1): 166-168.
via mitogen-activated protein kinases ERK and p38[J]. Cellular and [27] ELISA L, IGNACIO Á, JAVIER R. Improving the pressing extraction of
Molecular Biology (Noisy-le-Grand, France), 2000, 46(3): 609-617. polyphenols of orange peel by pulsed electric fields[J]. Innovative
[6] CHU J S, LLOYD F L, TRIFAN O C, et al. Potential involvement of Food Science and Emerging Technologies, 2013, 17: 79-84.
the cyclooxygenase-2 pathway in the regulation of tumor-associated [28] HAN C J (韩彩静), XIE C Y (谢春阳), CHEN X Y (陈相艳), et al.
angiogenesis and growth in pancreatic cancer1[J]. Molecular Cancer Optimization of acid extraction of non-extractable polyphenols from
Therapeutics, 2003, 2(1): 1-7. blueberries[J]. Journal of Food Science and Technology (食品科学技
[7] HU C, KITTS D D. Luteolin and luteolin-7-O-glucoside from 术学报), 2013, 31(5): 31-36.
dandelion flower suppress iNOS and COX-2 in RAW 264. 7 cells[J]. [29] LUO Y L (骆亚丽), YANG C Y (杨聪颖), XIAO H (肖航), et al.
Molecular and Cellular Biochemistry, 2004, 265(1/2): 107-113. Optimization and comparison of alkali extraction and acid extraction
[8] LIU W Q (刘文强), ZHANG Y L (张懿玲), XIONG H (熊华), et al. of bound polyphenols in Psidium guajava Linn[J]. Natural Product Research
Anti-inflammatory effect and molecular mechanism of durian hull and Development (天然产物研究与开发), 2018, 30(7): 1242-1251.
polyphenols on LPS-induced RAW 264.7 macrophages[J]. Food & [30] SHI W J (史文景), YOU S J (游双红), HU J Y (胡佳羽), et al.
Machinery (食品与机械), 2020, 36(4): 15-20, 50. Research of Kumquat polyphenols extraction and antioxident activity
[9] RU Y (汝医), CHENG A W (程安玮), WANG W L (王文亮), et al. [J]. Farm Products Processing (农产品加工), 2020, (6): 48-51.
Study on the content of extractable and non-extractable polyphenols [31] HOU C M (侯春梅), LI X Y (李新颖), YE W L (叶伟亮), et al. The
in onions[J]. Acta Agriculturae Zhejiangensis (浙江农业学报), 2013, proliferation of suspension cells was compared with that of CCK-8
25(1): 187-191. by MTT assay[J]. Military Medical Sciences (军事医学科学院院
[10] CORREA-BETANZO J, AIIEN-VERCOE E, MCDONALD J, et al. 刊), 2009, 33(4): 400-401.
Stability and biological activity of wild blueberry (Vaccinium [32] ZHAO J H (赵嘉惠), ZHANG H P (张华屏), WANG C F (王春芳).
angustifolium) polyphenols during simulated in vitro gastrointestinal MTT assay in the detection of cell proliferation[J]. Journal of Shanxi
digestion[J]. Food Chemistry, 2014, 165: 522-531. Medical University (山西医科大学学报), 2007, 38(3): 262-263.
[11] HAN Y H, HUANG M G, LI L F, et al. Non-extractable polyphenols [33] LIU J N (刘佳宁), WANG X Y (王鑫雅), SUN Y (孙玥). Research
from cranberries: Potential anti-inflammation and anti-colon-cancer progress on the effects of macrophage polarization in inflammatory
agents[J]. Food & Function, 2019, 10(12): 7714-7723. diseases[J]. Biological Chemical Engineering (生物化工), 2020,
[12] LOU S N, HO C T. Phenolic compounds and biological activities of 6(1): 112-115.