Page 126 - 《精细化工》2021年第5期
P. 126

·980·                             精细化工   FINE CHEMICALS                                 第 38 卷

            中,高质量浓度(100 mg/L)的NEPP对增强RAW 264.7                     small-size citrus: Kumquat and calamondin[J]. Journal of Food and
                                                                   Drug Analysis, 2017, 25(1): 162-175.
            巨噬细胞吞噬能力最为显著(p<0.05)。结果表明,金                        [13]  BARRECA  D, GATTUSO G, BELLOCCO E,  et al. Flavanones:
                                                                   Citrus phytochemical with health-promoting properties[J]. BioFactors,
            柑 NEPP 能够直接作用于 LPS 刺激的 RAW 264.7 细                     2017, 43(4): 495-506.
            胞,提高其吞噬能力,从而保护机体免受抗原感染。                            [14]  ROOWI S, CROZIER A. Flavonoids  in tropical citrus  species[J].
                                                                   Journal of Agricultural and Food Chemistry, 2011, 59(22): 12217-12225.
                                                               [15]  LOU S N, YI C L, HSU Y S. Phenolic content, antioxidant activity
            3   结论                                                 and effective compounds of Kumquat extracted by different solvents[J].
                                                                   Food Chemistry, 2016, 197: 1-6.
                                                               [16]  PEREZ-JIMENEZ  J, DIAZ-RUBIO  M E, SAURA-CALIXTO F.
                (1)通过 PEF 法提取金柑 NEPP,经响应面优                         Non-extractable polyphenols, a major dietary antioxidant: Occurrence,
                                                                   metabolic fate and health effects[J].  Nutrition Research Reviews,
            化后得到提取金柑 NEPP 的最佳条件为:脉冲数 250                           2013, 26(2): 118-129.
            次,场强 11.8 kV/cm,液料比 0.34∶1(L∶g)。在此条                [17]  YANG C Y (杨聪颖), LUO Y L (骆亚丽), GUO S Y (郭时印), et al.
                                                                   Optimization of extraction process of polyphenols from Kumquat by
            件下,得到金柑 NEPP 含量为 1.6382 mg GAE/g DW。                   response surface  methodology[J]. Modern Food Science  and
                (2)采用 MTT 法检测金柑 NEPP 对 RAW 264.7                   Technology (现代食品科技), 2018, 34(5): 174-181.
                                                               [18]  ZOU  Y P,  CHANG S K C, GU Y,  et al. Antioxidant activity and
            吞噬细胞生长的影响,结果表明,当金柑 NEPP 质                              phenolic compositions of lentil (Lens culinaris var. Morton) extract
                                                                   and its fractions[J]. Journal of Agricultural and Food Chemistry,
            量浓度低于 100 mg/L 时对细胞没有毒性作用;采用                           2011, 59(6): 2268-2276.
            中性红比色法以及 Griess 法检测吞噬能力和 NO 生                      [19]  LI Y Z (李艳姿), ZHANG W Z (张伟哲), TANG L M (汤立民), et al.
                                                                   Rapid extraction of lignans from the stems of Schisandra chinensis
            成量,结果表明,金柑 NEPP 可抑制 RAW 264.7 吞                        by response surface methodology combined with high-voltage pulsed
            噬细胞分泌 NO 和增加吞噬能力,说明金柑 NEPP                             electric field[J]. Journal of Jilin Agricultural University, 2018, 40(5):
                                                                   589-595.
            具有良好的免疫调节作用。                                       [20]  SALLY E K, NADIA B, NIKOLAI L et al. Pulsed electric field
                                                                   treatment of citrus fruits: Improvement of juice  and polyphenols
                (3)根据上述结果推测,金柑 NEPP 在一定程                           extraction[J]. Innovative Food Science and Emerging Technologies,
            度上有减缓炎症的作用,对治疗肠炎及抑制结肠癌                                 2018, 46: 153-161.
                                                               [21]  WANG J J (王婧杰), MA F M (马凤鸣), MU  L Q (穆立蔷).
            可能有一定的效果,本课题组将在后续实验中进行                                 Optimization of ultrasound-assisted extraction of flavonoids in bark
            体外模拟消化及动物实验,为药食同源的深入开发                                 of Tilia amurensis Rupr. by response surface method[J]. Non-wood
                                                                   Forest Research, 2012, 30(4): 113-118.
            利用提供一定参考。                                          [22]  LI B (李斌), LEI Y (雷月), MENG X J (孟宪军), et al. Optimization
                                                                   of ultrasonic-assisted extraction of polyphenols from haskap berries
            参考文献:                                                  (Lonicera caerulea L.) using response surface methodology and their
                                                                   antioxidant capacity[J] .Food Science (食品科学), 2015, 36(22): 33-39.
            [1]   LI L (李丽), SHENG J F (盛金凤), SUN J (孙健), et al. Review on   [23]  MENON  L  N, SATHEESH S  K  K, PANICKER S P,  et al.
                 nutritional value and comprehensive utilization of Kumquat and present   Antiproliferative activity of caged xant hones from the leaves of
                 situation[J]. The Food Industry (食品工业), 2015, 36(9): 220-224.   Garcinia wightii T. Anderson[J]. Fitoterapia, 2020, 143: 104592.
            [2]   ZHANG J X ( 张佳欣 ).  Advances in the synergistic antioxidant   [24]  AHMADIAN S, BARAR J, SAEI A  A, et al. Cellular toxicity of
                 properties of polyphenols[J]. Modern Agriculture Research (现代农  nanogeno medicine in MCF-7 cell line: MTT assay[J]. Journal of
                 业研究), 2020, 49(1): 117-118, 121.                  Visualized Experiments, 2009, (26): 1191.
            [3]   YAN H Q (阎海青), QU J R (曲静然), CHEN X Y (陈相艳), et al.   [25]  ZHENG Y R  (郑怡然), WEI W  (韦玮), YANG X  W (杨秀伟).
                 Optimization of alkali extraction for non-extractable polyphenols   Chuanliguspirolide, a new butylphthalide derivative from Chuanxiong
                 from blueberries by response surface methodology[J]. Food Science   Rhizoma and its inhibition on NO production in LPS-activated RAW
                 and Technology (食品科技), 2013, 38(11): 203-209.     264.7 and BV2 cell lines[J]. Chinese Traditional and Herbal Drugs
            [4]   DENG Y N (邓雅妮), GUO S Y (郭时印), XIAO H (肖航), et al.   (中草药), 2018, 49(7): 1497-1503.
                 Research progress in non-extractable polyphenols in  fruits and   [26]  WEN P (闻平), HE Y (何艳), YE Q L (叶庆林), et al. The proliferation
                 vegetables[J]. Farm Products Processing (农产品加工), 2018, (20): 62-65.   activity of cells was determined by neutral red colorimetry[J]. Journal of
            [5]   CHEN K,  MAINES M D. Nitric oxide induces heme oxygenase-1   Zhenjiang Medical College(镇江医学院学报), 2000, 10(1): 166-168.
                 via mitogen-activated protein kinases ERK and p38[J]. Cellular and   [27]  ELISA L, IGNACIO Á, JAVIER R. Improving the pressing extraction of
                 Molecular Biology (Noisy-le-Grand, France), 2000, 46(3): 609-617.   polyphenols  of  orange peel by pulsed electric fields[J]. Innovative
            [6]   CHU J S, LLOYD F L, TRIFAN O C, et al. Potential involvement of   Food Science and Emerging Technologies, 2013, 17: 79-84.
                 the cyclooxygenase-2 pathway in the regulation of tumor-associated   [28]  HAN C J (韩彩静), XIE C Y (谢春阳), CHEN X Y (陈相艳), et al.
                 angiogenesis and growth in pancreatic cancer1[J]. Molecular Cancer   Optimization of acid extraction of non-extractable polyphenols from
                 Therapeutics, 2003, 2(1): 1-7.                    blueberries[J]. Journal of Food Science and Technology (食品科学技
            [7]   HU C, KITTS D D. Luteolin and luteolin-7-O-glucoside from   术学报), 2013, 31(5): 31-36.
                 dandelion flower suppress iNOS and COX-2 in RAW 264. 7 cells[J].   [29]  LUO Y L (骆亚丽), YANG C Y (杨聪颖), XIAO  H (肖航), et al.
                 Molecular and Cellular Biochemistry, 2004, 265(1/2): 107-113.   Optimization and comparison of alkali extraction and acid extraction
            [8]   LIU W Q (刘文强), ZHANG Y L (张懿玲), XIONG H (熊华), et al.   of bound polyphenols in Psidium guajava Linn[J]. Natural Product Research
                 Anti-inflammatory  effect and  molecular  mechanism of durian hull   and Development (天然产物研究与开发), 2018, 30(7): 1242-1251.
                 polyphenols  on LPS-induced RAW 264.7 macrophages[J]. Food &   [30]  SHI W J (史文景), YOU S J (游双红), HU J  Y (胡佳羽),  et al.
                 Machinery (食品与机械), 2020, 36(4): 15-20, 50.        Research of Kumquat polyphenols extraction and antioxident activity
            [9]  RU  Y  (汝医), CHENG A W (程安玮), WANG W L (王文亮), et al.   [J]. Farm Products Processing (农产品加工), 2020, (6): 48-51.
                 Study on the content of extractable and non-extractable polyphenols   [31]  HOU C M (侯春梅), LI X Y (李新颖), YE W L (叶伟亮), et al. The
                 in onions[J]. Acta Agriculturae Zhejiangensis (浙江农业学报), 2013,   proliferation of suspension cells was compared with that of CCK-8
                 25(1): 187-191.                                   by MTT assay[J].  Military Medical Sciences (军事医学科学院院
            [10]  CORREA-BETANZO J, AIIEN-VERCOE E, MCDONALD J, et al.   刊), 2009, 33(4): 400-401.
                 Stability and biological activity of wild blueberry (Vaccinium   [32]  ZHAO J H (赵嘉惠), ZHANG H P (张华屏), WANG C F (王春芳).
                 angustifolium) polyphenols during simulated in vitro gastrointestinal   MTT assay in the detection of cell proliferation[J]. Journal of Shanxi
                 digestion[J]. Food Chemistry, 2014, 165: 522-531.   Medical University (山西医科大学学报), 2007, 38(3): 262-263.
            [11]  HAN Y H, HUANG M G, LI L F, et al. Non-extractable polyphenols   [33]  LIU J N (刘佳宁), WANG X Y (王鑫雅), SUN Y (孙玥). Research
                 from cranberries:  Potential anti-inflammation and anti-colon-cancer   progress on the effects of macrophage polarization in inflammatory
                 agents[J]. Food & Function, 2019, 10(12): 7714-7723.     diseases[J]. Biological Chemical  Engineering  (生物化工), 2020,
            [12]  LOU S N, HO C T. Phenolic compounds and biological activities of   6(1): 112-115.
   121   122   123   124   125   126   127   128   129   130   131