Page 139 - 《精细化工》2021年第5期
P. 139
第 5 期 鲁 旖,等: 水热法制备 Cu-ZnO 纳米催化剂用于乙酸乙酯加氢 ·993·
见催化剂连续运转 300 h 活性稳定,乙酸乙酯转化 binary oxides supported Cu-ZnO catalyst in ethyl acetate
hydrogenation to ethanol[J]. Catalysis Letters, 2017, 147: 2817-2825.
率在 250 h 后略有降低,但仍基本保持较好水平。 [6] YAN K, CHEN A. Selective hydrogenation of furfural and levulinic
测试前期 4 h 处于装置运行初期,催化剂活性尚未 acid to biofuels on the ecofriendly Cu-Fe catalyst[J]. Fuel, 2014, 115:
101-108.
稳定。300 h 内催化剂活性基本维持在 92%以上。 [7] ZHU Y M, SHI L. Zn promoted Cu-Al catalyst for hydrogenation of
ethyl acetate to alcohol[J]. Journal of Industrial and Engineering
Chemistry, 2014, 20(4): 2341-2347.
[8] WANG S R, GUO W W, WANG H X, et al. Effect of the Cu/SBA-15
catalyst preparation method on methyl acetate hydrogenation for
ethanol production[J]. New Journal of Chemistry, 2014, 38: 2792-2800.
[9] XI X, MA S, CHEN J F, et al. Promotional effects of Ce, Mn and Fe
oxides on CuO/SiO 2 catalysts for CO oxidation[J]. Journal of
Environmental Chemical Engineering, 2014, 2: 1011-1017.
[10] YUAN P, LIU Z Y, ZHANG W Q, et al. Cu-Zn/Al 2O 3 catalyst for the
hydrogenation of esters to alcohols[J]. Chinese Journal of Catalysis,
2010, 31(7): 769-775.
[11] HUA W Y, JING W, CAI J X, et al. Template-free hydrothermal
synthesis of flower-like hierarchical zinc oxide nanostructures[J].
Optik, 2018, 168: 778-783.
[12] MATEOS C, SILVA H, TANAKA D, et al. CuO/ZnO catalysts for
图 9 催化剂稳定性测试 methanol steam reforming: The role of the support polarity ratio and
Fig. 9 Catalyst stability test surface area[J]. Applied Catalysis B: Environmental, 2015, 174/175:
67-76.
[13] LEI H, NIE R F, WU G Q, et al. Hydrogenation of CO 2 to CH 3OH
3 结论 over Cu/ZnO catalysts with different ZnO morphology[J]. Fuel,
2015, 154: 161-166.
[14] MARDIKAR S P, KULKARNI S, ADHYAPAK P V. Sunlight driven
(1)适宜的铜摩尔分数有利于其在氧化锌上得 highly efficient degradation of methylene blue by CuO-ZnO
到良好地分散,有利于被还原的同时具有良好的稳 nanoflowers[J]. Journal of Environmental Chemical Engineering,
2020, 8(2): 1-11.
定性。采用水热法制备了铜摩尔分数为 40%的具有 [15] PENG Y (彭艳). Hydrothermal synthesis of Ni/ZrO 2 Catalyst and its
花状形貌的铜-氧化锌催化剂。其乙酸乙酯催化加氢 hydrogenation performance[D]. Nanchang: Nanchang University (南
昌大学), 2015.
活性相对于铜摩尔分数为 20%、30%、50%、60%的 [16] SENTHIL K P, SELVAKUMAR M, GANESH B S, et al. CuO/ZnO
催化剂有显著优势。 nanorods: An affordable efficient p-n heterojunction and morphology
dependent photocatalytic activity against organic contaminants[J].
(2)水热反应条件直接影响着催化剂的形貌, Journal of Alloys & Compounds, 2017, 701: 562-573.
而高效的调控形貌手段可以达到直接调控催化剂比 [17] ZHANG Y (章昱). Study on gas phase hydrogenation of acetic acid
and acetic acid to ethanol over Cu-Mg catalyst[D]. Hangzhou:
表面积和稳定性的目的。优化了水热法工艺条件, Zhejiang University (浙江大学), 2017.
发现在 130 ℃下水热反应 10 h 制得的催化剂活性最 [18] KULD S, THORHAUGE M, FALSIG H, et al. Quantifying the
promotion of Cu catalysts by ZnO for methanol synthesis[J]. Science,
高,具有纳米花状形貌且规则均一、稳定。 2016, 352: 969-974.
(3)制备的催化剂具有较好的催化性能。其中, [19] ZHANG Y F, FAN G L, YANG L, et al. Efficient conversion of
furfural into cyclopentanone over high performing and stable
最佳乙酸乙酯转化率和乙醇选择性分别为 94%和 Cu-ZrO 2 catalysts[J]. Applied Catalysis A: General, 2018, 561: 117-126.
98%,且连续运转 300 h 稳定性测试催化剂活性降低 [20] ZHANG W Y (张维义), YUE Z (岳志), HUANG Y (黄岩), et al.
Effect of support on the performance of copper based catalyst for
较少,具有工业化应用前景。 hydrogenation of ethyl acetate to ethanol[J]. Natural Gas Chemical
(4)由于条件限制,对所制备催化剂只进行了 Industry-C1 (天然气化工-C1), 2017, 6: 57-64.
[21] EMANALZAHRANI A R. Synthesis of copper nanoparticles with
为期 300 h 的稳定性实验考察,下一步工作是评价
various sizes and shapes: Application as a superior non-enzymatic
并提高催化剂的稳定性,实现 1000 h 以上连续运转。 sensor and antibacterial agent[J]. International Journal of Electrochemical
Science, 2016, 11(6): 4712-4723.
参考文献: [22] SHAN B (单宾). Study on Cu-ZnO catalyst for hydrogenation of methyl
acetate to ethanol[D]. Tianjin: Tianjin University (天津大学), 2018.
[1] NAN Z D, TAN Z C. Thermodynamic investigation on properties of [23] WANG Y (王悦). Surface active species and catalytic mechanism of
gasohol[J]. Energy & Fuels, 2004, 18(4): 1032-1037. Cu-based catalysts in the methyl acetate hydrogenation reaction[D].
[2] LIU N (刘娜). Discussion on the future development of domestic Tianjin: Tianjin University (天津大学), 2016.
fuel ethanol[J]. Enterprise Science and Technology and Development [24] YAN T Y, ALBRIGHT L F, CASE L C. Hydrogenolysis of esters,
(企业科技与发展), 2019, (11): 176-179. particularly perfluorinated esters[J]. Industrial & Engineering Chemistry
[3] LU Z P, YIN H B, WANG A L, et al. Hydrogenation of ethyl acetate Product Research and Development. 1965, 4(2): 101-107.
to ethanol over Cu/ZnO/MO x (MO x=SiO 2, Al 2O 3, and ZrO 2) catalysts[J]. [25] EVANS J W, WAINWRIGHT M S, CANT N W, et al. Structural and
Journal of Industrial & Engineering Chemistry, 2016, 37: 208-215. reactivity effects in the copper-catalyzed hydrogenolysis of aliphatic
[4] NAIK S N, GOUDV V, ROUT P K, et al. Production of first and esters[J]. Journal of catalysis, 1984, 88(1): 203-213.
second generation biofuels: A comprehensive review[J]. Renewable [26] GONG C (龚程). Preparation and properties of nitrogen-doped TiO 2
and Sustainable Energy Reviews, 2010, 14(2): 578-597. by hudrothermal method[D]. Nanchang: Nanchang University (南昌
[5] HUANG Y, ZHANG W Y, YUE Z, et al. Performance of SiO 2-TiO 2 大学), 2019