Page 139 - 《精细化工》2021年第5期
P. 139

第 5 期                  鲁   旖,等:  水热法制备 Cu-ZnO 纳米催化剂用于乙酸乙酯加氢                              ·993·


            见催化剂连续运转 300 h 活性稳定,乙酸乙酯转化                             binary oxides supported Cu-ZnO catalyst in ethyl acetate
                                                                   hydrogenation to ethanol[J]. Catalysis Letters, 2017, 147: 2817-2825.
            率在 250 h 后略有降低,但仍基本保持较好水平。                         [6]   YAN K, CHEN A. Selective hydrogenation of furfural and levulinic
            测试前期 4 h 处于装置运行初期,催化剂活性尚未                              acid to biofuels on the ecofriendly Cu-Fe catalyst[J]. Fuel, 2014, 115:
                                                                   101-108.
            稳定。300 h 内催化剂活性基本维持在 92%以上。                        [7]   ZHU Y M, SHI L. Zn promoted Cu-Al catalyst for hydrogenation of
                                                                   ethyl acetate to alcohol[J]. Journal of Industrial and Engineering
                                                                   Chemistry, 2014, 20(4): 2341-2347.
                                                               [8]   WANG S R, GUO W W, WANG H X, et al. Effect of the Cu/SBA-15
                                                                   catalyst preparation method on methyl acetate hydrogenation for
                                                                   ethanol production[J]. New Journal of Chemistry, 2014, 38: 2792-2800.
                                                               [9]   XI X, MA S, CHEN J F, et al. Promotional effects of Ce, Mn and Fe
                                                                   oxides on CuO/SiO 2 catalysts for CO oxidation[J]. Journal of
                                                                   Environmental Chemical Engineering, 2014, 2: 1011-1017.
                                                               [10]  YUAN P, LIU Z Y, ZHANG W Q, et al. Cu-Zn/Al 2O 3 catalyst for the
                                                                   hydrogenation of esters to alcohols[J]. Chinese Journal of Catalysis,
                                                                   2010, 31(7): 769-775.
                                                               [11]  HUA W Y, JING  W, CAI J X,  et al. Template-free hydrothermal
                                                                   synthesis of flower-like hierarchical zinc oxide nanostructures[J].
                                                                   Optik, 2018, 168: 778-783.
                                                               [12]  MATEOS C, SILVA H,  TANAKA  D, et al. CuO/ZnO catalysts for
                         图 9   催化剂稳定性测试                            methanol steam reforming: The role of the support polarity ratio and
                        Fig. 9    Catalyst stability test          surface area[J]. Applied Catalysis B: Environmental, 2015, 174/175:
                                                                   67-76.
                                                               [13]  LEI H, NIE R F, WU G Q, et al. Hydrogenation of CO 2 to CH 3OH
            3    结论                                                over Cu/ZnO catalysts with different ZnO  morphology[J]. Fuel,
                                                                   2015, 154: 161-166.
                                                               [14]  MARDIKAR S P, KULKARNI S, ADHYAPAK P V. Sunlight driven
                (1)适宜的铜摩尔分数有利于其在氧化锌上得                              highly efficient  degradation  of methylene blue by CuO-ZnO
            到良好地分散,有利于被还原的同时具有良好的稳                                 nanoflowers[J]. Journal of Environmental Chemical Engineering,
                                                                   2020, 8(2): 1-11.
            定性。采用水热法制备了铜摩尔分数为 40%的具有                           [15]  PENG Y (彭艳). Hydrothermal synthesis of Ni/ZrO 2 Catalyst and its
            花状形貌的铜-氧化锌催化剂。其乙酸乙酯催化加氢                                hydrogenation performance[D]. Nanchang: Nanchang University (南
                                                                   昌大学), 2015.
            活性相对于铜摩尔分数为 20%、30%、50%、60%的                       [16]  SENTHIL K P, SELVAKUMAR M, GANESH B S, et al. CuO/ZnO
            催化剂有显著优势。                                              nanorods: An affordable efficient p-n heterojunction and morphology
                                                                   dependent  photocatalytic activity against organic contaminants[J].
                (2)水热反应条件直接影响着催化剂的形貌,                              Journal of Alloys & Compounds, 2017, 701: 562-573.
            而高效的调控形貌手段可以达到直接调控催化剂比                             [17]  ZHANG Y (章昱). Study on gas phase hydrogenation of acetic acid
                                                                   and acetic  acid to ethanol over Cu-Mg catalyst[D]. Hangzhou:
            表面积和稳定性的目的。优化了水热法工艺条件,                                 Zhejiang University (浙江大学), 2017.
            发现在 130  ℃下水热反应 10 h 制得的催化剂活性最                     [18]  KULD S,  THORHAUGE M, FALSIG H,  et al. Quantifying the
                                                                   promotion of Cu catalysts by ZnO for methanol synthesis[J]. Science,
            高,具有纳米花状形貌且规则均一、稳定。                                    2016, 352: 969-974.
                (3)制备的催化剂具有较好的催化性能。其中,                         [19]  ZHANG Y F, FAN G L, YANG  L,  et al. Efficient conversion of
                                                                   furfural into cyclopentanone  over  high performing  and stable
            最佳乙酸乙酯转化率和乙醇选择性分别为 94%和                                Cu-ZrO 2 catalysts[J]. Applied Catalysis A: General, 2018, 561: 117-126.
            98%,且连续运转 300 h 稳定性测试催化剂活性降低                       [20]  ZHANG W Y (张维义), YUE  Z (岳志), HUANG  Y (黄岩), et al.
                                                                   Effect of support on the performance  of copper based catalyst for
            较少,具有工业化应用前景。                                          hydrogenation of ethyl acetate to ethanol[J]. Natural Gas Chemical
                (4)由于条件限制,对所制备催化剂只进行了                              Industry-C1 (天然气化工-C1), 2017, 6: 57-64.
                                                               [21]  EMANALZAHRANI A  R. Synthesis of copper nanoparticles with
            为期 300 h 的稳定性实验考察,下一步工作是评价
                                                                   various sizes and shapes: Application  as a superior non-enzymatic
            并提高催化剂的稳定性,实现 1000 h 以上连续运转。                           sensor and antibacterial agent[J]. International Journal of Electrochemical
                                                                   Science, 2016, 11(6): 4712-4723.
            参考文献:                                              [22] SHAN B (单宾). Study on Cu-ZnO catalyst for hydrogenation of methyl
                                                                   acetate to ethanol[D]. Tianjin: Tianjin University (天津大学), 2018.
            [1]   NAN Z D, TAN Z C. Thermodynamic investigation on properties of   [23] WANG Y (王悦). Surface active species and catalytic mechanism of
                 gasohol[J]. Energy & Fuels, 2004, 18(4): 1032-1037.   Cu-based catalysts in the methyl acetate hydrogenation reaction[D].
            [2]   LIU N (刘娜). Discussion on the future development of  domestic   Tianjin: Tianjin University (天津大学), 2016.
                 fuel ethanol[J]. Enterprise Science and Technology and Development   [24]  YAN T Y, ALBRIGHT  L F,  CASE  L C.  Hydrogenolysis of esters,
                 (企业科技与发展), 2019, (11): 176-179.                   particularly perfluorinated esters[J]. Industrial & Engineering Chemistry
            [3]   LU Z P, YIN H B, WANG A L, et al. Hydrogenation of ethyl acetate   Product Research and Development. 1965, 4(2): 101-107.
                 to ethanol over Cu/ZnO/MO x (MO x=SiO 2, Al 2O 3, and ZrO 2) catalysts[J].   [25]  EVANS J W, WAINWRIGHT M S, CANT N W, et al. Structural and
                 Journal of Industrial & Engineering Chemistry, 2016, 37: 208-215.   reactivity effects in the copper-catalyzed hydrogenolysis of aliphatic
            [4]   NAIK S N,  GOUDV V, ROUT P  K,  et al. Production of first and   esters[J]. Journal of catalysis, 1984, 88(1): 203-213.
                 second generation biofuels: A comprehensive review[J]. Renewable   [26]  GONG C (龚程). Preparation and properties of nitrogen-doped TiO 2
                 and Sustainable Energy Reviews, 2010, 14(2): 578-597.   by hudrothermal method[D]. Nanchang: Nanchang University (南昌
            [5]   HUANG Y, ZHANG W Y, YUE Z, et al. Performance of SiO 2-TiO 2   大学), 2019
   134   135   136   137   138   139   140   141   142   143   144