Page 59 - 《精细化工》2021年第6期
P. 59
第 6 期 刘晓康,等: 淀粉基铽(Ⅲ)配合物的制备及荧光检测性能 ·1121·
优异的给电子能力,从而引起二者之间的能量迁移。 chemiluminescence imaging assay for the determination of ethopabate
3+
但其他溶液的吸收光谱和 OSNP@Tb 的激发光谱 residues in chicken muscle[J]. Analytical Methods, 2015, 7(21):
9295-9303.
重叠程度不大,甚至没有重叠,说明这些物质的吸 [11] YUE X Y, ZHU W X, MA S Y, et al. Highly sensitive and selective
3+
收光谱和 OSNP@Tb 的激发光谱不存在明显的竞 determination of tertiary butylhydroquinone in edible oils by
competitive reaction induced “on-off-on” fluorescent switch[J].
3+
争关系。当 OSNP@Tb 体系中加入呋喃唑酮后,前
Journal of Agricultural and Food Chemistry, 2016, 64(3): 706-713.
者的激发光谱和后者的吸收光谱的重叠,导致 [12] ZHOU Z, HAN M L, FU H R, et al. Engineering design toward
3+
OSNP@Tb 电子跃迁的激发能降低,从而导致体系 exploring the functional group substitution in 1D channels of Zn-
organic frameworks upon nitro explosives and antibiotics detection[J].
的荧光猝灭。因此,推测检测机理是由于呋喃唑酮 Dalton Transactions, 2018, 47(15): 5359-5365.
3+
溶液的紫外吸收与 OSNP@Tb 体系的激发光谱之 [13] LIU Q, LI F, LU H, et al. Enhanced dispersion stability and heavy
间存在竞争引起的 [34] 。 metal ion adsorption capability of oxidized starch nanoparticles[J].
Food Chemistry, 2017, 242(1): 256-263.
[14] YAN W, ZHANG C L, CHEN S G, et al. Two lanthanide metal-
3 结论 organic frameworks as remarkably selective and sensitive bifunctional
luminescence sensor for metal ions and small organic molecules[J].
制备了一种基于氧化淀粉纳米颗粒的稀土铽 ACS Applied Materials & Interfaces, 2017, 9(2): 1629-1634.
3+
(Ⅲ)配合物 OSNP@Tb ,该物质发射强烈的绿色荧 [15] XU N, ZHANG Q H, ZHANG G A. A carbazole-functionalized
metal-organic framework for efficient detection of antibiotics,
光,能够高效、选择性检测水中的呋喃唑酮。检测 pesticides and nitroaromatic compounds[J]. Dalton Transactions,
4
标准曲线为 Y=1.919×10 X–0.13688,猝灭常数 K sv = 2019, 48(8): 2683-2691.
[16] FENG X, SHANG Y P, ZHANG H, et al. Enhanced luminescence
2
4
1.919×10 L/mol,R =0.992,线性关系良好,检测限
and tunable magnetic properties of lanthanide coordination polymers
–6
达到 1.67×10 mol/L,猝灭效率>90%,OSNP@Tb 3+ based on fluorine substitution and phenanthroline ligand[J]. RSC
是一种检测呋喃唑酮的良好生物荧光探针。 Advances, 2019, 9(29): 16328-16338.
[17] JING Y F, LONG B F, HUANG Q, et al. Ln-incorporated coordination
参考文献: complexes as fluorescence sensor for selective detection nitroaromatic
compounds[J]. Materials Chemistry and Physics, 2019, 232: 152-
[1] YIN K, ZHANG W, CHEN L. Pyoverdine secreted by pseudomonas 159.
aeruginosa as a biological recognition element for the fluorescent [18] WANG Y M, YANG Z R, XIAO L H, et al. Lab-on-MOFs: Color-
detection of furazolidone[J]. Biosensors and Bioelectronics, 2014, coded multitarget fluorescence detection with white-light emitting
51: 90-96. metal-organic frameworks under single wavelength excitation[J].
[2] LIU S, DOU L, YAO X, et al. Polydopamine nanospheres as high- Analytical Chemistry, 2018, 90(9): 5758-5763.
affinity signal tag towards lateral flow immunoassay for sensitive [19] KRÓLIKOWSKA K, PIETRZYK S, FORTUNA T, et al. Impact of
furazolidone detection[J]. Food Chemistry, 2020, 315: 126310. the degree of octenyl succinylation on metal ions complexation and
[3] URRACA J L, MORENO-BONDI M C. Quantitative determination functional properties of maize starch[J]. Food Chemistry, 2019, 278:
of penicillin V and amoxicillin in feed samples by pressurised liquid 284-293.
extraction and liquid chromatography with ultraviolet detection[J]. [20] COBAN M B, AMJAD A, AYGUN M, et al. Sensitization of HoⅢ
Journal of Pharmaceutical and Biomedical Analysis, 2009, 49(2): and SmⅢ luminescence by efficient energy transfer from antenna
289-294. ligands: Magnetic, visible and NIR photoluminescence properties of
[4] JAKUBEC P, URBANOVA V, MEDRIKOVA Z, et al. Advanced GdⅢ, HoⅢ and SmⅢ coordination polymers[J]. Inorganica Chimica
sensing of antibiotics with magnetic gold nanocomposite: Acta, 2017, 455: 25-33.
Electrochemical detection of chloramphenicol[J]. Chemistry-A
European Journal, 2016, 22(40): 14279-14284. [21] ANGELLIER H, CHOISNARD L, MOLINA-BOISSEAU S, et al.
[5] ZHANG F, YAO H, ZHAO Y F, et al. Mixed matrix membranes Optimization of the preparation of aqueous suspensions of waxy
incorporated with Ln-MOF for selective and sensitive detection of maize starch nanocrystals using a response surface methodology[J].
nitrofuran antibiotics based on inner filter effect[J]. Talanta: The Biomacromolecules, 2004, 5(4): 1545-1551.
International Journal of Pure and Applied Analytical Chemistry, [22] KOMULAINEN S, VERLACKT C, PURSIAINEN J, et al. Oxidation
2017, 174: 660-666. and degradation of native wheat starch by acidic bromate in water at
[6] ZHANG Q F, LEI M Y, YAN H, et al. A water-stable 3D luminescent room temperature[J]. Carbohydrate Polymers, 2013, 93(1): 73-80.
metal-organic framework based on heterometallic [(Eu6ZnⅡ)-Zn- [23] WING R E, WILLETT J L. Water soluble oxidized starches by
Ⅲ] clusters showing highly sensitive, selective, and reversible detection peroxide reactive extrusion[J]. Industrial Crops and Products, 1997,
of ronidazole[J]. Inorganic Chemistry, 2017, 56(14): 7610-7614. 7(1): 45-52.
[7] SHEN K, JU Z M, QIN L, et al. Two stable 3D porous metal-organic [24] ZHANG Y R, WANG X L, ZHAO G M, et al. Preparation and
frameworks with high selectivity for detection of PA and metal properties of oxidized starch with high degree of oxidation[J].
ions[J]. Dyes and Pigments, 2017, 136: 515-521. Carbohydrate Polymers, 2012, 87(4): 2554-2562.
[8] LI C H, ZHU L, YANG W X, et al. Amino-functionalized Al-MOF [25] MARQUES P T, LIMA A M F, BIANCO G, et al. Thermal properties
for fluorescent detection of tetracyclines in milk[J]. Journal of and stability of cassava starch films cross-linked with tetraethylene
Agricultural and Food Chemistry, 2019, 67(4): 1277-1283. glycol diacrylate[J]. Polymer Degradation and Stability, 2006, 91(4):
[9] KWON H, CHAN K M, KOOL E T. DNA as an environmental sensor: 726-732.
Detection and identification of pesticide contaminants in water with [26] LUO F X, HUANG Q, FU X, et al. Preparation and characterisation
fluorescent nucleobases[J]. Organic and Biomolecular Chemistry, of crosslinked waxy potato starch[J]. Food Chemistry, 2009, 115(2):
2017, 15(8): 1801-1809. 563-568.
[10] LI Z Z, LI Z L, LI D M, et al. Molecularly imprinted polymer-based (下转第 1129 页)