Page 133 - 《精细化工》2021年第7期
P. 133

第 7 期                 于   雪,等:  五氯化铌/离子液体[BMIm]Br 共催化合成酰胺化合物                            ·1415·


                 ACS Sustainable Chemistry & Engineering, 2020, 8(6): 2462-2471.   [34]  ALI A, SIDDIKI H S M A A, ONODERA W, et al. Amidation of
            [25]  NACHTIGALL F M, CORILO Y E, CASSOL C C, et al. Multiply   carboxylic acids with amines by Nb 2O 5 as a reusable Lewis acid
                 charged (di-)radicals[J]. Angewandte  Chemie International Edition,   catalyst[J]. ChemCatChem, 2015, 7(21): 3555-3561.
                 2008, 47 (1): 151-154.                        [35]  OJEDA P A, HERNANDEZ S A, GAMBA S D. Direct amidation of
            [26]  ANDERSON J L, DING R, ELLERN A,  et al. Structure and   carboxylic acids with amines under  microwave irradiation using
                 properties of high stability geminal dicationic ionic liquids[J].   silica gel as a solid support[J]. Green Chemistry, 2015, 17: 3157-3163.
                 Journal of the American Chemical Society, 2005, 127(2): 593-604.   [36]  LUNDBERG H, TINNIS F, SELANDER N, et al, Catalytic amide
            [27]  WANG Z, BAO X, XU M, et al. Direct formation of amides from   formation from non-activated carboxylic acids and  amines[J].
                 carboxylic acids and amines catalyzed by niobium(Ⅴ ) oxalate   Chemical Society Reviews, 2014, 43(8): 2714-2742.
                 hydrate[J]. ChemistrySelect, 2018, 3(9): 2599-2603.   [37]  WANG Z H, BAO X Y, XU M Y, et al. Direct formation of amides
            [28]  GOU F R, WANG X C, HUO P F, et al. Palladium-catalyzed aryl   from carboxylic acids and amines catalyzed by niobium(Ⅴ) oxalate
                 C—H bonds activation/acetoxylation utilizing a bidentate system[J].   hydrate[J]. ChemistrySelect, 2018, 3(9): 2599-2603.
                 Organic Letters, 2009, 11(24): 5726-5729.     [38]  SABATINI M T, BOULTON  L T, SNEDDON  H F,  et al. A green
            [29]  REN W, YAMANE M. Carbamoylation of aryl halides by molybdenum   chemistry perspective on catalytic amide bond formation[J]. Nature
                 or tungsten carbonyl amine complexes[J]. The Journal of Organic   Catalysis, 2019, 2: 10-17.
                 Chemistry, 2010, 75(9): 3017-3020.            [39]  AHMADI M, MORADI L, SADEGHZADEH M. Synthesis of
            [30]  GRYKO D, LIPINSKI R. Asymmetric direct aldol reaction catalysed   benzamides through direct condensation  of carboxylic  acids and
                 by L-prolinethioamides[J]. European Journal of Organic Chemistry,   amines in the presence of diatomite earth@IL/ZrCl 4 under ultrasonic
                 2006, 2006(17): 3864-3876.                        irradiation[J]. Research on Chemical Intermediates, 2018, 44: 7873-7889.
            [31]  KATKAR  K V, CHAUDHARI P S,  AKAMANCHI K  G. Sulfated   [40]  YANG X Z (杨许召), WANG J (王军), FANG Y (方云). Synthesis,
                 tungstate: An efficient catalyst  for  the ritter reaction[J]. Green   properties and applications of dicationic ionic liquids[J]. Progress in
                 Chemistry, 2011, 13(4): 835-838.                  Chemistry (化学进展), 2016, 28(2/3): 269-283.
            [32]  OHSHIMA T,  IWASAKI T,  MAEGAWA Y,  et al. Enzyme-like   [41]  SHIIROTA H, MANDAI T, FUKAZAWA  H,  et al. Comparison
                 chemoselective acylation  of alcohols in the presence of amines   between dicationic  and monocationic ionic liquids: Liquid density,
                 catalyzed by a tetranuclear zinc cluster[J]. Journal of the American   thermal properties, surface tension, and shear viscosity[J]. Journal of
                 Chemical Society, 2008, 130(10): 2944-2945.       Chemical & Engineering Data, 2011, 56(5): 2453-2459.
            [33]  ALI A, SIDDIKI H S M  A A, KON K,  et al. Heterogeneous   [42]  ZHOU X C (周新成), TAO Y (陶钰), ZHANG C L (张成龙), et al.
                 niobium(Ⅴ) oxide catalyst for the direct amidation of esters[J].   Synthesis of N-isobornyl acrylamide[J]. Fine Chemicals(精细化工),
                 ChemCatChem, 2015, 7(17): 2705-2710.              2020, 37(4): 860-864.


            (上接第 1379 页)                                           18042-18045.
            [4]   NICHOLAS A, IRENE S M, THANA C, et al. The role of oxygen in   [13]  TOMAS L, JONGCHUL L, JOEL T, et al. Charge density dependent
                 the degradation of  methylammonium lead trihalide perovskite   mobility of organic hole-transporters and mesoporous TiO 2
                 photoactive layers[J]. Angewandte Chemie International Edition,   determined by transient mobility spectroscopy: Implications to
                 2015, 54(28): 8208-8212.                          dye-sensitized and organic solar cells[J]. Advanced Materials, 2013,
            [5]   TOMAS L, GILES E E, SANDEEP P, et al. Overcoming ultraviolet   25(23): 3227-3233.
                 light instability of sensitized TiO 2 with meso-superstructured   [14]  YANG J L, BRADEN D S, LIU D  Y, et al. Investigation  of
                 organometal tri-halide perovskite solar cells[J]. Nature Communications,   CH 3NH 3PbI 3 degradation rates and  mechanisms in controlled
                 2013, 4: 2885.                                    humidity environments using in situ techniques[J]. ACS Nano, 2015,
            [6]   FENG J Y, LAI K W, SHIUE Y S, et al. Cost-effective dopant-free   9(2): 1955-1963.
                 star-shaped oligo-aryl amines for high performance perovskite solar   [15]  GRANCINI G, ROLDAN-CARMONA C, ZIMMERMANN I, et al.
                 cells[J]. Journal of Materials Chemistry A, 2019, 7(23): 14209-14221.   One-year stable  perovskite solar cells by 2D/3D interface
            [7]   PARK S J,  JEON S H, LEE I K, et al.  Inverted planar perovskite   engineering[J]. Nature Communications, 2017, 8: 15684.
                 solar cells with dopant free hole transporting material: Lewis   [16]  JEFFREY A G, PIERRE A M, HPRASHANT V K. Transformation of
                 base-assisted  passivation and reduced charge recombination[J].   the excited state and photovoltaic efficiency of CH 3NH 3PbI 3
                 Journal of Materials Chemistry A, 2017, 5(25): 13220-13227.   perovskite upon controlled exposure to humidified air[J]. Journal of
            [8]   KASPARAS R, SANGHYUN P,  GAO P, et al. Molecular   the American Chemical Society, 2015, 137(4): 1530-1538.
                 engineering of face-on oriented dopant-free hole transporting   [17]  TOBAT P I S, TILL S, ACHIM S, et al. Spiro compounds for organic
                 material for perovskite solar cells with 19% PCE[J]. Journal of   optoelectronics[J]. Chemical Reviews, 2007, 107(4): 1011-1065.
                 Materials Chemistry A, 2017, 5(17): 7811-7815.   [18]  LU F T, FENG Y Q, WANG X X, et al. Influence of the additional
            [9]   WANG C, HU J L, LI  C  H, et  al. Spiro-linked  molecular   electron-withdrawing  unit  in  beta-functionalized  porphyrin
                 hole-transport materials for highly efficient inverted perovskite solar   sensitizers on the photovoltaic performance of dye-sensitized solar
                 cells[J]. Solar Rrl, 2020, 4(3): 1900389.         cells[J]. Dyes and Pigments, 2017, 139: 255-263.
            [10]  YIN X X, ZHOU J, SONG Z N, et  al.  Dithieno[3,2-b:2',3'-d]   [19]  LI C  L (厉成龙), JIANG Y F (蒋艺斐), ZHANG B (张宝), et al.
                 pyrrol-cored hole transport material  enabling over 21% efficiency   Self-assembly and photoelectric properties of an triarylamine-1,3,5-
                 dopant-free perovskite solar cells[J]. Advanced Functional Materials,   benzenetricarboxamide derivative[J]. Fine Chemicals (精细化工),
                 2019, 29(38): 1904300.                            2019, 36(4): 730-736.
            [11]  ZHANG J B, XU B, YANG L, et al. Incorporation of counter ions in   [20]  JIE J R, XU Q Q, YANG G, et al. Porphyrin sensitizers involving a
                 organic molecules: New strategy in developing dopant-free hole   fluorine-substituted benzothiadiazole as auxiliary acceptor and
                 transport materials for efficient mixed-ion  perovskite solar cells[J].   thiophene as  π  bridge for use in dye-sensitized  solar cells
                 Advanced Energy Materials, 2017, 7(14): 1602736.   (DSSCs)[J]. Dyes and Pigments, 2020, 174: 107984.
            [12]  JULIAN B, AMALIE D, FLORIAN K, et al. Tris[2-(1H-pyrazol-1-   [21]  FRANCESCA T, GABRIELE D C, ALESSANDRA F, et al. Second
                 yl)pyridine]cobalt(Ⅲ) as  p-type dopant for  organic semiconductors   order nonlinear optical properties  of 4-styrylpyridines axially
                                                                             4
                                                                                Ⅱ
                 and its application in highly efficient solid-state dye-sensitized solar   coordinated to A Zn   porphyrins: A comparative experimental and
                 cells[J]. Journal of the American  Chemical Society, 2011, 133(45):   theoreticalbinvestigation[J]. Inorganics, 2020, 8(8): 8080045.
   128   129   130   131   132   133   134   135   136   137   138