Page 133 - 《精细化工》2021年第7期
P. 133
第 7 期 于 雪,等: 五氯化铌/离子液体[BMIm]Br 共催化合成酰胺化合物 ·1415·
ACS Sustainable Chemistry & Engineering, 2020, 8(6): 2462-2471. [34] ALI A, SIDDIKI H S M A A, ONODERA W, et al. Amidation of
[25] NACHTIGALL F M, CORILO Y E, CASSOL C C, et al. Multiply carboxylic acids with amines by Nb 2O 5 as a reusable Lewis acid
charged (di-)radicals[J]. Angewandte Chemie International Edition, catalyst[J]. ChemCatChem, 2015, 7(21): 3555-3561.
2008, 47 (1): 151-154. [35] OJEDA P A, HERNANDEZ S A, GAMBA S D. Direct amidation of
[26] ANDERSON J L, DING R, ELLERN A, et al. Structure and carboxylic acids with amines under microwave irradiation using
properties of high stability geminal dicationic ionic liquids[J]. silica gel as a solid support[J]. Green Chemistry, 2015, 17: 3157-3163.
Journal of the American Chemical Society, 2005, 127(2): 593-604. [36] LUNDBERG H, TINNIS F, SELANDER N, et al, Catalytic amide
[27] WANG Z, BAO X, XU M, et al. Direct formation of amides from formation from non-activated carboxylic acids and amines[J].
carboxylic acids and amines catalyzed by niobium(Ⅴ ) oxalate Chemical Society Reviews, 2014, 43(8): 2714-2742.
hydrate[J]. ChemistrySelect, 2018, 3(9): 2599-2603. [37] WANG Z H, BAO X Y, XU M Y, et al. Direct formation of amides
[28] GOU F R, WANG X C, HUO P F, et al. Palladium-catalyzed aryl from carboxylic acids and amines catalyzed by niobium(Ⅴ) oxalate
C—H bonds activation/acetoxylation utilizing a bidentate system[J]. hydrate[J]. ChemistrySelect, 2018, 3(9): 2599-2603.
Organic Letters, 2009, 11(24): 5726-5729. [38] SABATINI M T, BOULTON L T, SNEDDON H F, et al. A green
[29] REN W, YAMANE M. Carbamoylation of aryl halides by molybdenum chemistry perspective on catalytic amide bond formation[J]. Nature
or tungsten carbonyl amine complexes[J]. The Journal of Organic Catalysis, 2019, 2: 10-17.
Chemistry, 2010, 75(9): 3017-3020. [39] AHMADI M, MORADI L, SADEGHZADEH M. Synthesis of
[30] GRYKO D, LIPINSKI R. Asymmetric direct aldol reaction catalysed benzamides through direct condensation of carboxylic acids and
by L-prolinethioamides[J]. European Journal of Organic Chemistry, amines in the presence of diatomite earth@IL/ZrCl 4 under ultrasonic
2006, 2006(17): 3864-3876. irradiation[J]. Research on Chemical Intermediates, 2018, 44: 7873-7889.
[31] KATKAR K V, CHAUDHARI P S, AKAMANCHI K G. Sulfated [40] YANG X Z (杨许召), WANG J (王军), FANG Y (方云). Synthesis,
tungstate: An efficient catalyst for the ritter reaction[J]. Green properties and applications of dicationic ionic liquids[J]. Progress in
Chemistry, 2011, 13(4): 835-838. Chemistry (化学进展), 2016, 28(2/3): 269-283.
[32] OHSHIMA T, IWASAKI T, MAEGAWA Y, et al. Enzyme-like [41] SHIIROTA H, MANDAI T, FUKAZAWA H, et al. Comparison
chemoselective acylation of alcohols in the presence of amines between dicationic and monocationic ionic liquids: Liquid density,
catalyzed by a tetranuclear zinc cluster[J]. Journal of the American thermal properties, surface tension, and shear viscosity[J]. Journal of
Chemical Society, 2008, 130(10): 2944-2945. Chemical & Engineering Data, 2011, 56(5): 2453-2459.
[33] ALI A, SIDDIKI H S M A A, KON K, et al. Heterogeneous [42] ZHOU X C (周新成), TAO Y (陶钰), ZHANG C L (张成龙), et al.
niobium(Ⅴ) oxide catalyst for the direct amidation of esters[J]. Synthesis of N-isobornyl acrylamide[J]. Fine Chemicals(精细化工),
ChemCatChem, 2015, 7(17): 2705-2710. 2020, 37(4): 860-864.
(上接第 1379 页) 18042-18045.
[4] NICHOLAS A, IRENE S M, THANA C, et al. The role of oxygen in [13] TOMAS L, JONGCHUL L, JOEL T, et al. Charge density dependent
the degradation of methylammonium lead trihalide perovskite mobility of organic hole-transporters and mesoporous TiO 2
photoactive layers[J]. Angewandte Chemie International Edition, determined by transient mobility spectroscopy: Implications to
2015, 54(28): 8208-8212. dye-sensitized and organic solar cells[J]. Advanced Materials, 2013,
[5] TOMAS L, GILES E E, SANDEEP P, et al. Overcoming ultraviolet 25(23): 3227-3233.
light instability of sensitized TiO 2 with meso-superstructured [14] YANG J L, BRADEN D S, LIU D Y, et al. Investigation of
organometal tri-halide perovskite solar cells[J]. Nature Communications, CH 3NH 3PbI 3 degradation rates and mechanisms in controlled
2013, 4: 2885. humidity environments using in situ techniques[J]. ACS Nano, 2015,
[6] FENG J Y, LAI K W, SHIUE Y S, et al. Cost-effective dopant-free 9(2): 1955-1963.
star-shaped oligo-aryl amines for high performance perovskite solar [15] GRANCINI G, ROLDAN-CARMONA C, ZIMMERMANN I, et al.
cells[J]. Journal of Materials Chemistry A, 2019, 7(23): 14209-14221. One-year stable perovskite solar cells by 2D/3D interface
[7] PARK S J, JEON S H, LEE I K, et al. Inverted planar perovskite engineering[J]. Nature Communications, 2017, 8: 15684.
solar cells with dopant free hole transporting material: Lewis [16] JEFFREY A G, PIERRE A M, HPRASHANT V K. Transformation of
base-assisted passivation and reduced charge recombination[J]. the excited state and photovoltaic efficiency of CH 3NH 3PbI 3
Journal of Materials Chemistry A, 2017, 5(25): 13220-13227. perovskite upon controlled exposure to humidified air[J]. Journal of
[8] KASPARAS R, SANGHYUN P, GAO P, et al. Molecular the American Chemical Society, 2015, 137(4): 1530-1538.
engineering of face-on oriented dopant-free hole transporting [17] TOBAT P I S, TILL S, ACHIM S, et al. Spiro compounds for organic
material for perovskite solar cells with 19% PCE[J]. Journal of optoelectronics[J]. Chemical Reviews, 2007, 107(4): 1011-1065.
Materials Chemistry A, 2017, 5(17): 7811-7815. [18] LU F T, FENG Y Q, WANG X X, et al. Influence of the additional
[9] WANG C, HU J L, LI C H, et al. Spiro-linked molecular electron-withdrawing unit in beta-functionalized porphyrin
hole-transport materials for highly efficient inverted perovskite solar sensitizers on the photovoltaic performance of dye-sensitized solar
cells[J]. Solar Rrl, 2020, 4(3): 1900389. cells[J]. Dyes and Pigments, 2017, 139: 255-263.
[10] YIN X X, ZHOU J, SONG Z N, et al. Dithieno[3,2-b:2',3'-d] [19] LI C L (厉成龙), JIANG Y F (蒋艺斐), ZHANG B (张宝), et al.
pyrrol-cored hole transport material enabling over 21% efficiency Self-assembly and photoelectric properties of an triarylamine-1,3,5-
dopant-free perovskite solar cells[J]. Advanced Functional Materials, benzenetricarboxamide derivative[J]. Fine Chemicals (精细化工),
2019, 29(38): 1904300. 2019, 36(4): 730-736.
[11] ZHANG J B, XU B, YANG L, et al. Incorporation of counter ions in [20] JIE J R, XU Q Q, YANG G, et al. Porphyrin sensitizers involving a
organic molecules: New strategy in developing dopant-free hole fluorine-substituted benzothiadiazole as auxiliary acceptor and
transport materials for efficient mixed-ion perovskite solar cells[J]. thiophene as π bridge for use in dye-sensitized solar cells
Advanced Energy Materials, 2017, 7(14): 1602736. (DSSCs)[J]. Dyes and Pigments, 2020, 174: 107984.
[12] JULIAN B, AMALIE D, FLORIAN K, et al. Tris[2-(1H-pyrazol-1- [21] FRANCESCA T, GABRIELE D C, ALESSANDRA F, et al. Second
yl)pyridine]cobalt(Ⅲ) as p-type dopant for organic semiconductors order nonlinear optical properties of 4-styrylpyridines axially
4
Ⅱ
and its application in highly efficient solid-state dye-sensitized solar coordinated to A Zn porphyrins: A comparative experimental and
cells[J]. Journal of the American Chemical Society, 2011, 133(45): theoreticalbinvestigation[J]. Inorganics, 2020, 8(8): 8080045.