Page 203 - 《精细化工》2021年第7期
P. 203
第 7 期 王 帅,等: 常压/低压湿空气催化氧化氯乙酸降解机理 ·1485·
解生成 CO 2 。 wastewater treatments: A critical review[J]. Journal of Environmental
Chemical Engineering, 2020, 8(6): 104566.
3 结论 [8] BESSON M, BEZIAT J. Treatment of aqueous solutions of organic
pollutants by heterogeneous catalytic wet air oxidation (CWAO)[J].
Studies in Surface Science and Catalysis, 2007, 130(20): 1553-1558.
(1)利用无机熔盐水合物的温升效应,以
[9] LIU J L (刘杰龙). Fundamental and applied study of fine bubble
CaCl 2 •2H 2 O 熔盐水合物为反应介质,在温和条件下 intensified liquid phase oxidation techology in sub-molten salt
湿空气催化氧化降解 CAA 是完全可行的。该工艺可 medium[D]. Beijing: University of Chiese Academy of Sciences (中
国科学院大学), 2018.
以显著降低反应操作压力,从而可有效降低设备投 [10] TANG S, WANG X M, MAO Y Q, et al. Effect of dissolved oxygen
资和运行成本,有助于解决设备腐蚀的问题。 concentration on iron efficiency: Removal of three chloroacetic
acids[J]. Water Research, 2015, 73: 342-352.
(2)CuCl 2 是熔盐体系中湿空气氧化的有效催
[11] LAI C, HE T, LI X W, et al. Catalytic wet air oxidation of phenols
化剂,在 200 ℃和 0.35 MPa 压力下,CAA 和 COD over porous plate Cu-based catalysts[J]. Applied Clay Science, 2019,
的去除率分别可达 97.2%和 90.7%以上。 181(15): 105-112.
2+
(3)以 CuCl 2 为催化剂时,由 Cu 诱导产生的 [12] KUMAR A, VERMA N. Cu-Fe bimetal-carbon nanofiberous
catalytic beads for enhanced oxidation of dichlorvos pesticide and
•OH 可高效催化氧化 CAA,依次生成羟基乙酸、甲 simultaneous reduction of Cr(Ⅵ) in wet air[J]. Catalysis Today,
酸、二羟基乙酸、CO 2 和水。 2020, 348(10): 194-202.
[13] WANG L, CHEN Y, CHEN B Y, et al. Generation of hydroxyl
参考文献: radicals during photodegradation of chloroaceticacids by 254 nm
ultraviolet: A special degradation process revealed by aholistic
[1] ALICIA M, CONSTANZA C, ALBA H, et al. Hazard assessment of
radical determination methodology[J]. Journal of Hazardous
three haloacetic acids, as byproducts of water disinfection, in human
Materials, 2021, 404(15): 221-231.
urothelial cells[J]. Toxicology and Applied Pharmacology, 2018,
[14] HAMA A K. Application of different advanced oxidation proesses for
34(7): 70-78.
the removal of chloroacetic acids using a planar falling film reactor
[2] LI X F, MLITCH W A. Drinking water disinfection byproducts
[J]. Chemosphere, 2019, 228(15): 377-383.
(DBPs) and human health effects: Multidisciplinary challenges and
[15] NIKOLAKI M D, ZERVA C N, PHILIPPOPULOS C J. Photoatalytic
opportunities[J]. Environmental Science & Technology, 2018,
oxidation of 1, 3-dichloro-2-propanol aqueous solutions with modified
52(16): 1681-1689.
TiO 2 catalysts[J]. Applied Catalysis B: Environmental, 2009, 90(1):
[3] GU Y R (顾玉荣). Degradation of monochloroacetic acid by high
2– 89-98.
strength UV/SO 3 system[J]. China Environmental Science (中国环
[16] CHEN W S (陈文松). The treatment of salt-containing organic
境科学), 2019, 39(11): 4722-4729.
wastewater by activated carbon adsorption and fenton oxidation
[4] DING Z H ( 丁智 晖 ), DONG Z X ( 董子 萱 ). Analysis of
technology[J]. Industrial Water Treatment (工业水处理), 2020,
biodegradation technology of refractory organic matter[J]. Chemical
40(7): 60-64.
Intermediate (当代化工研究), 2018, 41(1): 49-51.
[17] MOUSSAVI G, REZAEI M. Exploring the advanced oxidation/
[5] MACKULAK T, PROUSEK J, DRUIL M, et al. Degradation and
reduction proesses in the VUV photoreactor for dechlorination and
toxicity changes in aqueous solutions of chloroacetic acids by
mineralization of trichloroacetic acid: Parametric experiments,
fenton-like treatment using zero-valent iron[J]. Chemical Papers,
degradation pathway and bioassessment[J]. Chemical Engineering
2013, 67(12): 621-632.
Journal, 2017, 328: 331-342.
[6] GHOLAMREZA M, MOHSEN R. Exploring the advanced
oxidation/reduction proesses in the VUV photoreactor for [18] BAXTER J N. Photolysis studies of the chloroacetic acids using light
dechlorination and mineralization of trichloroacetic acid: Parametric of 2537 A[J]. Radiation Research, 1968, 33(2): 303-310.
experiments, degradation pathway and bioassessment[J]. Chemical [19] WANG L, ZHANG Q, CHEN B, et al. Photolysis and photoatalysis
Engineering Journal, 2017, 32(8): 331-342. of haloacetic acids in water: A review of kinetics, influencing factors,
[7] ROSTAM A B, TAGHIZADEH M. Advanced oxidation proesses products, pathways, and mechanisms[J]. Journal of Hazardous
integrated by membrane reactors and bioreactors for various Materials, 2020, 391(41): 122-143.