Page 203 - 《精细化工》2021年第7期
P. 203

第 7 期                     王   帅,等:  常压/低压湿空气催化氧化氯乙酸降解机理                                 ·1485·


            解生成 CO 2 。                                             wastewater treatments: A critical review[J]. Journal of Environmental
                                                                   Chemical Engineering, 2020, 8(6): 104566.
            3   结论                                             [8]   BESSON M, BEZIAT J. Treatment of aqueous solutions of organic
                                                                   pollutants by heterogeneous catalytic wet air oxidation (CWAO)[J].
                                                                   Studies in Surface Science and Catalysis, 2007, 130(20): 1553-1558.
                (1)利用无机熔盐水合物的温升效应,以
                                                               [9]   LIU J L (刘杰龙). Fundamental and applied study of fine bubble
            CaCl 2 •2H 2 O 熔盐水合物为反应介质,在温和条件下                       intensified liquid  phase oxidation techology in  sub-molten  salt
            湿空气催化氧化降解 CAA 是完全可行的。该工艺可                              medium[D]. Beijing: University of Chiese Academy of Sciences (中
                                                                   国科学院大学), 2018.
            以显著降低反应操作压力,从而可有效降低设备投                             [10]  TANG S, WANG X M, MAO Y Q, et al. Effect of dissolved oxygen
            资和运行成本,有助于解决设备腐蚀的问题。                                   concentration on iron efficiency: Removal of three chloroacetic
                                                                   acids[J]. Water Research, 2015, 73: 342-352.
                (2)CuCl 2 是熔盐体系中湿空气氧化的有效催
                                                               [11]  LAI C, HE T, LI X W, et al. Catalytic wet air oxidation of phenols
            化剂,在 200  ℃和 0.35 MPa 压力下,CAA 和 COD                    over porous plate Cu-based catalysts[J]. Applied Clay Science, 2019,
            的去除率分别可达 97.2%和 90.7%以上。                               181(15): 105-112.
                                               2+
                (3)以 CuCl 2 为催化剂时,由 Cu 诱导产生的                   [12]  KUMAR A, VERMA  N.  Cu-Fe bimetal-carbon nanofiberous
                                                                   catalytic beads for enhanced oxidation of dichlorvos  pesticide and
            •OH 可高效催化氧化 CAA,依次生成羟基乙酸、甲                             simultaneous  reduction of Cr(Ⅵ) in  wet air[J]. Catalysis Today,
            酸、二羟基乙酸、CO 2 和水。                                       2020, 348(10): 194-202.
                                                               [13]  WANG L,  CHEN Y, CHEN B  Y,  et al. Generation of hydroxyl
            参考文献:                                                  radicals during photodegradation  of  chloroaceticacids by 254 nm
                                                                   ultraviolet: A special degradation  process revealed by aholistic
            [1]   ALICIA M, CONSTANZA C, ALBA H, et al. Hazard assessment of
                                                                   radical determination methodology[J]. Journal of  Hazardous
                 three haloacetic acids, as byproducts of water disinfection, in human
                                                                   Materials, 2021, 404(15): 221-231.
                 urothelial cells[J]. Toxicology and Applied Pharmacology, 2018,
                                                               [14]  HAMA A K. Application of different advanced oxidation proesses for
                 34(7): 70-78.
                                                                   the removal of chloroacetic acids using a planar falling film reactor
            [2]   LI X F, MLITCH  W A. Drinking water disinfection byproducts
                                                                   [J]. Chemosphere, 2019, 228(15): 377-383.
                 (DBPs) and human health effects: Multidisciplinary challenges and
                                                               [15]  NIKOLAKI M D, ZERVA C N, PHILIPPOPULOS C J. Photoatalytic
                 opportunities[J]. Environmental Science & Technology, 2018,
                                                                   oxidation of 1, 3-dichloro-2-propanol aqueous solutions with modified
                 52(16): 1681-1689.
                                                                   TiO 2 catalysts[J]. Applied Catalysis B: Environmental, 2009, 90(1):
            [3]  GU  Y  R  (顾玉荣). Degradation  of monochloroacetic acid by high
                          2–                                       89-98.
                 strength UV/SO 3  system[J]. China Environmental Science (中国环
                                                               [16]  CHEN W S (陈文松). The treatment of  salt-containing  organic
                 境科学), 2019, 39(11): 4722-4729.
                                                                   wastewater by activated carbon adsorption and fenton  oxidation
            [4]   DING Z H ( 丁智 晖 ), DONG Z X ( 董子 萱 ). Analysis of
                                                                   technology[J]. Industrial Water Treatment (工业水处理), 2020,
                 biodegradation technology of refractory organic matter[J]. Chemical
                                                                   40(7): 60-64.
                 Intermediate (当代化工研究), 2018, 41(1): 49-51.
                                                               [17]  MOUSSAVI G, REZAEI M. Exploring the advanced oxidation/
            [5]   MACKULAK  T, PROUSEK J, DRUIL M,  et al. Degradation and
                                                                   reduction proesses in the VUV photoreactor for dechlorination and
                 toxicity changes in aqueous solutions of chloroacetic acids by
                                                                   mineralization of trichloroacetic acid: Parametric experiments,
                 fenton-like treatment using zero-valent iron[J]. Chemical Papers,
                                                                   degradation pathway and bioassessment[J]. Chemical Engineering
                 2013, 67(12): 621-632.
                                                                   Journal, 2017, 328: 331-342.
            [6]   GHOLAMREZA  M, MOHSEN  R. Exploring the advanced
                 oxidation/reduction proesses in the VUV photoreactor for   [18]  BAXTER J N. Photolysis studies of the chloroacetic acids using light
                 dechlorination and mineralization of trichloroacetic acid: Parametric   of 2537 A[J]. Radiation Research, 1968, 33(2): 303-310.
                 experiments, degradation pathway and bioassessment[J]. Chemical   [19]  WANG L, ZHANG Q, CHEN B, et al. Photolysis and photoatalysis
                 Engineering Journal, 2017, 32(8): 331-342.        of haloacetic acids in water: A review of kinetics, influencing factors,
            [7]   ROSTAM A B, TAGHIZADEH M.  Advanced oxidation proesses   products, pathways, and  mechanisms[J]. Journal of Hazardous
                 integrated by  membrane reactors  and bioreactors for various     Materials, 2020, 391(41): 122-143.
   198   199   200   201   202   203   204   205   206   207   208