Page 63 - 《精细化工》2021年第8期
P. 63

第 8 期                           赵   凯,等:  两亲性淀粉自组装研究进展                                  ·1557·


            式运输的问题缺少重视。                                        [13]  YANG J L, GAO C M, LU S Y, et al. Physicochemical characterization
                 未来可集中于对 AS 自组装的不断应用与开发,                           of amphiphilic nanoparticles based on the novel starch-deoxycholic
                                                                   acid conjugates and self-aggregates[J]. Carbohydrate Polymers, 2014,
            侧重于原理、制备方法、控制影响因素的研究。在                                 102: 838-845.
            AS 合成过程中,可寻求更加高效的改性手段,以获                           [14]  ZHANG L  F,  EISENBERG A. Multiple morphologies of crew-cut
                                                                   aggregates of polystyrene-b-poly(acrylic acid) block copolymers[J].
            取改性程度均一的产品。在官能团引入方面,将绿                                 Science, 1995, 268(5218): 1728-1731.
            色无污染放在首要地位,以确保改性后不破坏原淀                             [15]  LI Y X, KIM Y J, REDDY C K, et al. Enhanced bioavailability of
                                                                   alpha-lipoic acid by complex formation with octenylsuccinylated
            粉可持续利用、可生物降解的优良性质,减轻工业
                                                                   high-amylose starch[J]. Carbohydrate Polymers, 2019, 219: 39-45.
            对环境的负担,或在条件允许的情况下将客体直接                             [16]  PANG S C, TAY S H, CHIN S F. Facile synthesis of curcumin-loaded
            交联/接枝在原淀粉上构成 AS,从根本上降低 AS                              starch-maleate nanoparticles[J]. Journal of Nanomaterials, 2014,
                                                                   2014: 1-7.
            自组装繁琐的步骤,减少工业成本。在 AS 投入使
                                                               [17]  ABBAS S, KARANGWA E, BASHARI M,  et al. Fabrication of
            用运输过程中,以干制剂代替液体/胶体制剂将大大                                polymeric nanocapsules from curcumin-loaded nanoemulsion
            减少运输成本,然而运输条件如何统筹控制而不影                                 templates by self-assembly[J]. Ultrasonics Sonochemistry, 2015, 23:
                                                                   81-92.
            响复水后 AS 胶束性质需深入研究。                                 [18]  MARWAN  M A R,  AMER A  M, ABDULJALIL D S,  et al.
                 这些将为 AS 自组装更成功应用于工业领域提                            Synergistic effects of amorphous OSA-modified starch, unsaturated
                                                                   lipid-carrier, and sonocavitation treatment in fabricating of
            供更多的可行性。
                                                                   Lavandula angustifolia  essential oil nanoparticles[J]. International
                                                                   Journal of Biological Macromolecules, 2020, 151: 702-712.
            参考文献:                                              [19]  HE X, GONG X C, LI W F, et al. Preparation and characterization of
            [1]   GRUMEZESCU A M. Novel approaches of nanotechnology in   amphiphilic composites made with double-modified (etherified and
                 food[M]. Salt Lake,Ⅰ: Academic Press, 2016: 133-164.     esterified) potato starches[J]. Starch, 2019, 71(9/10): 1900089.
            [2]   PANDAY R, POUDEL A J,  LI X H,  et al. Amphiphilic  core-shell   [20]  KOU Z L, DOU D, LAN L H, et al. Preparation, characterization,
                 nanoparticles: Synthesis, biophysical properties, and applications[J].     and performance analysis of starch-based nanomicelles[J]. International
                 Colloids and Surfaces B: Biointerfaces, 2018, 172: 68-81.     Journal of Biological Macromolecules, 2020, 145: 655-662.
            [3]   CHANG R R, YANG J, GE S J, et al. Synthesis and self-assembly of   [21]  LIU M,  ZHOU Z M, WANG X F,  et al. Formation of poly(l,
                 octenyl succinic anhydride modified short  glucan chains  based   d-lactide) spheres with controlled size by direct dialysis[J]. Polymer,
                 amphiphilic biopolymer: Micelles, ultrasmall micelles, vesicles, and   2007, 48(19): 5767-5779.
                 lutein encapsulation/release[J]. Food Hydrocolloids, 2017, 67: 14-26.     [22]  GU F, LI B Z, XIA H P,  et al. Preparation  of starch nanospheres
            [4]   CHEETHAM N W H, TAO  L P. Variation in crystalline type with   through hydrophobic modification  followed by initial water
                 amylose  content in maize starch granules: An X-ray powder   dialysis[J]. Carbohydrate Polymers, 2015, 115: 605-612.
                 diffraction study[J]. Carbohydrate Polymers, 1998, 36(4): 277-284.     [23]  DELSARTE I, DELATTRE F, RAFIN C,  et al. Investigations of
            [5]   WANG C, CHEN  X, LIU S  W. Encapsulation of tangeretin into   benzo[a]pyrene encapsulation and Fenton degradation by starch
                 debranched-starch inclusion complexes: Structure, properties and   nanoparticles[J]. Carbohydrate Polymers, 2018, 186: 344-349.
                 stability[J]. Food Hydrocolloids, 2020, 100: 105409.       [24]  ALZATE P,  GERSCHENSON L, FLORES S. Micro/nanoparticles
            [6]   KAYIS B, BEKIROGLU S. Structural analysis of saccharin in   containing  potassium sorbate obtained by the dialysis  technique:
                 aqueous solution by NMR and supramolecular interactions with α-,   Effect of starch concentration and  starch ester type on the particle
                 β-,  γ-cyclodextrins[J]. Journal of Molecular Structure, 2020, 1202:   properties[J]. Food Hydrocolloids, 2019, 95: 540-550.
                 127304.                                       [25]  YU C, LIU C Q,  WANG S C,  et al. Hydroxyethyl starch-based
            [7]   KUMARI S, YADAV B S, YADAV R B. Synthesis and modification   nanoparticles featured with redox-sensitivity and chemo-photothermal
                 approaches for starch nanoparticles for their emerging food industrial   therapy for synergized tumor eradication[J]. Cancers, 2019, 11(2):
                 applications: A review[J]. Food Research International, 2019, 128:   1-20.
                 108765.                                       [26]  CHEN  S T, WU  J, TANG  Q,  et al. Nano-micelles based on
            [8]   ETTELAIE R, HOLMES M, CHEN  J S,  et al. Steric stabilising   hydroxyethyl starch-curcumin conjugates for improved stability,
                 properties  of hydrophobically modified starch:  Amylose  vs.   antioxidant and anticancer activity of curcumin[J]. Carbohydrate
                 amylopectin[J]. Food Hydrocolloids, 2016, 58: 364-377.     Polymers, 2020, 228: 115398.
            [9]   GHALESEIEDI Z K, TEHRANI A D, PARSAMANESH M.   [27]  ORZOLEK B J, RAHMAN M A, LOVINE P M, et al. Synthesis of
                 Starch-based dual amphiphilic graft copolymer as a new pH-sensitive   biorenewable  starch-farnesene  amphiphilic  conjugates  via
                 maltidrug co-delivery system[J]. International Journal of Biological   transesterification  of terpene-derived diels-alder adducts[J]. ACS
                 Macromolecules, 2018, 118: 913-920.               Sustainable Chemistry & Engineering, 2018, 6(10): 13562-13569.
            [10]  WORZAKOWSKA M, GROCHOWICZ M.  Effect  of some   [28]  JU B  Z, YAN  D  M, ZHANG S F.  Micelles self-assembled from
                 parameters on the synthesis and the physico-chemical properties of   thermoresponsive 2-hydroxy-3-butoxypropyl starches for drug
                 new amphiphilic starch-g-copolymers[J]. Carbohydrate  Polymers,   delivery[J]. Carbohydrate Polymers, 2012, 87(2): 1404-1409.
                 2015, 130: 344-352.                           [29]  HAN J F, BORJIHAN G, BAI R, et al. Synthesis and characterization
            [11]  QIAO L, GU Q M, CHENG H N. Enzyme-catalyzed synthesis of   of starch piperinic ester and its self-assembly of nanospheres[J].
                 hydrophobically  modified starch[J]. Carbohydrate Polymers, 2006,   Journal of Applied Polymer Science, 2008, 108(1): 523-528.
                 66(1): 135-140.                               [30]  HAO Y  C, CHEN Y, LI Q,  et al.    Synthesis, characterization and
            [12]  SANDHU K S, KAUR M, SINGH N, et al. A comparison of native   hydrophobicity of esterified waxy potato starch nanocrystals[J].
                 and acid thinned normal and waxy corn starches: Physicochemical,   Industrial Crops and Products, 2019, 130: 111-117.
                 thermal, morphological and pasting properties[J]. LWT-Food Science   [31]  CHEN M J, GAO C M, LU S Y, et al. Preparation of redox-sensitive,
                 and Technology, 2008, 41(6): 1000-1010.           core-crosslinked micelles self-assembled from  mPEGylated starch
   58   59   60   61   62   63   64   65   66   67   68