Page 63 - 《精细化工》2021年第8期
P. 63
第 8 期 赵 凯,等: 两亲性淀粉自组装研究进展 ·1557·
式运输的问题缺少重视。 [13] YANG J L, GAO C M, LU S Y, et al. Physicochemical characterization
未来可集中于对 AS 自组装的不断应用与开发, of amphiphilic nanoparticles based on the novel starch-deoxycholic
acid conjugates and self-aggregates[J]. Carbohydrate Polymers, 2014,
侧重于原理、制备方法、控制影响因素的研究。在 102: 838-845.
AS 合成过程中,可寻求更加高效的改性手段,以获 [14] ZHANG L F, EISENBERG A. Multiple morphologies of crew-cut
aggregates of polystyrene-b-poly(acrylic acid) block copolymers[J].
取改性程度均一的产品。在官能团引入方面,将绿 Science, 1995, 268(5218): 1728-1731.
色无污染放在首要地位,以确保改性后不破坏原淀 [15] LI Y X, KIM Y J, REDDY C K, et al. Enhanced bioavailability of
alpha-lipoic acid by complex formation with octenylsuccinylated
粉可持续利用、可生物降解的优良性质,减轻工业
high-amylose starch[J]. Carbohydrate Polymers, 2019, 219: 39-45.
对环境的负担,或在条件允许的情况下将客体直接 [16] PANG S C, TAY S H, CHIN S F. Facile synthesis of curcumin-loaded
交联/接枝在原淀粉上构成 AS,从根本上降低 AS starch-maleate nanoparticles[J]. Journal of Nanomaterials, 2014,
2014: 1-7.
自组装繁琐的步骤,减少工业成本。在 AS 投入使
[17] ABBAS S, KARANGWA E, BASHARI M, et al. Fabrication of
用运输过程中,以干制剂代替液体/胶体制剂将大大 polymeric nanocapsules from curcumin-loaded nanoemulsion
减少运输成本,然而运输条件如何统筹控制而不影 templates by self-assembly[J]. Ultrasonics Sonochemistry, 2015, 23:
81-92.
响复水后 AS 胶束性质需深入研究。 [18] MARWAN M A R, AMER A M, ABDULJALIL D S, et al.
这些将为 AS 自组装更成功应用于工业领域提 Synergistic effects of amorphous OSA-modified starch, unsaturated
lipid-carrier, and sonocavitation treatment in fabricating of
供更多的可行性。
Lavandula angustifolia essential oil nanoparticles[J]. International
Journal of Biological Macromolecules, 2020, 151: 702-712.
参考文献: [19] HE X, GONG X C, LI W F, et al. Preparation and characterization of
[1] GRUMEZESCU A M. Novel approaches of nanotechnology in amphiphilic composites made with double-modified (etherified and
food[M]. Salt Lake,Ⅰ: Academic Press, 2016: 133-164. esterified) potato starches[J]. Starch, 2019, 71(9/10): 1900089.
[2] PANDAY R, POUDEL A J, LI X H, et al. Amphiphilic core-shell [20] KOU Z L, DOU D, LAN L H, et al. Preparation, characterization,
nanoparticles: Synthesis, biophysical properties, and applications[J]. and performance analysis of starch-based nanomicelles[J]. International
Colloids and Surfaces B: Biointerfaces, 2018, 172: 68-81. Journal of Biological Macromolecules, 2020, 145: 655-662.
[3] CHANG R R, YANG J, GE S J, et al. Synthesis and self-assembly of [21] LIU M, ZHOU Z M, WANG X F, et al. Formation of poly(l,
octenyl succinic anhydride modified short glucan chains based d-lactide) spheres with controlled size by direct dialysis[J]. Polymer,
amphiphilic biopolymer: Micelles, ultrasmall micelles, vesicles, and 2007, 48(19): 5767-5779.
lutein encapsulation/release[J]. Food Hydrocolloids, 2017, 67: 14-26. [22] GU F, LI B Z, XIA H P, et al. Preparation of starch nanospheres
[4] CHEETHAM N W H, TAO L P. Variation in crystalline type with through hydrophobic modification followed by initial water
amylose content in maize starch granules: An X-ray powder dialysis[J]. Carbohydrate Polymers, 2015, 115: 605-612.
diffraction study[J]. Carbohydrate Polymers, 1998, 36(4): 277-284. [23] DELSARTE I, DELATTRE F, RAFIN C, et al. Investigations of
[5] WANG C, CHEN X, LIU S W. Encapsulation of tangeretin into benzo[a]pyrene encapsulation and Fenton degradation by starch
debranched-starch inclusion complexes: Structure, properties and nanoparticles[J]. Carbohydrate Polymers, 2018, 186: 344-349.
stability[J]. Food Hydrocolloids, 2020, 100: 105409. [24] ALZATE P, GERSCHENSON L, FLORES S. Micro/nanoparticles
[6] KAYIS B, BEKIROGLU S. Structural analysis of saccharin in containing potassium sorbate obtained by the dialysis technique:
aqueous solution by NMR and supramolecular interactions with α-, Effect of starch concentration and starch ester type on the particle
β-, γ-cyclodextrins[J]. Journal of Molecular Structure, 2020, 1202: properties[J]. Food Hydrocolloids, 2019, 95: 540-550.
127304. [25] YU C, LIU C Q, WANG S C, et al. Hydroxyethyl starch-based
[7] KUMARI S, YADAV B S, YADAV R B. Synthesis and modification nanoparticles featured with redox-sensitivity and chemo-photothermal
approaches for starch nanoparticles for their emerging food industrial therapy for synergized tumor eradication[J]. Cancers, 2019, 11(2):
applications: A review[J]. Food Research International, 2019, 128: 1-20.
108765. [26] CHEN S T, WU J, TANG Q, et al. Nano-micelles based on
[8] ETTELAIE R, HOLMES M, CHEN J S, et al. Steric stabilising hydroxyethyl starch-curcumin conjugates for improved stability,
properties of hydrophobically modified starch: Amylose vs. antioxidant and anticancer activity of curcumin[J]. Carbohydrate
amylopectin[J]. Food Hydrocolloids, 2016, 58: 364-377. Polymers, 2020, 228: 115398.
[9] GHALESEIEDI Z K, TEHRANI A D, PARSAMANESH M. [27] ORZOLEK B J, RAHMAN M A, LOVINE P M, et al. Synthesis of
Starch-based dual amphiphilic graft copolymer as a new pH-sensitive biorenewable starch-farnesene amphiphilic conjugates via
maltidrug co-delivery system[J]. International Journal of Biological transesterification of terpene-derived diels-alder adducts[J]. ACS
Macromolecules, 2018, 118: 913-920. Sustainable Chemistry & Engineering, 2018, 6(10): 13562-13569.
[10] WORZAKOWSKA M, GROCHOWICZ M. Effect of some [28] JU B Z, YAN D M, ZHANG S F. Micelles self-assembled from
parameters on the synthesis and the physico-chemical properties of thermoresponsive 2-hydroxy-3-butoxypropyl starches for drug
new amphiphilic starch-g-copolymers[J]. Carbohydrate Polymers, delivery[J]. Carbohydrate Polymers, 2012, 87(2): 1404-1409.
2015, 130: 344-352. [29] HAN J F, BORJIHAN G, BAI R, et al. Synthesis and characterization
[11] QIAO L, GU Q M, CHENG H N. Enzyme-catalyzed synthesis of of starch piperinic ester and its self-assembly of nanospheres[J].
hydrophobically modified starch[J]. Carbohydrate Polymers, 2006, Journal of Applied Polymer Science, 2008, 108(1): 523-528.
66(1): 135-140. [30] HAO Y C, CHEN Y, LI Q, et al. Synthesis, characterization and
[12] SANDHU K S, KAUR M, SINGH N, et al. A comparison of native hydrophobicity of esterified waxy potato starch nanocrystals[J].
and acid thinned normal and waxy corn starches: Physicochemical, Industrial Crops and Products, 2019, 130: 111-117.
thermal, morphological and pasting properties[J]. LWT-Food Science [31] CHEN M J, GAO C M, LU S Y, et al. Preparation of redox-sensitive,
and Technology, 2008, 41(6): 1000-1010. core-crosslinked micelles self-assembled from mPEGylated starch