Page 152 - 《精细化工》2021年第9期
P. 152
·1866· 精细化工 FINE CHEMICALS 第 38 卷
gamma-NiOOH[J]. Advanced Materials, 2021, 33(11): 2005587- American Chemical Society, 2014, 136(18): 6744-6753.
2005596. [17] CHENG W R, ZHAO X, SU H, et al. Lattice-strained metal-
[6] HUANG Y, ZHANG S L, LU X F, et al. Trimetallic spinel organic-framework arrays for bifunctional oxygen electrocatalysis[J].
NiCo 2-xFe xO 4 nanoboxes for highly efficient electrocatalytic oxygen Nature Energy, 2019, 4(2): 115-122.
evolution[J]. Angewandte Chemie International Edition, 2021, DOI: [18] LI J T, HUANG W Z, WANG M M, et al. Low-crystalline bimetallic
10.1002/anie. 202103058. metal-organic framework electrocatalysts with rich active sites for
[7] WANG Y, YAN L T, DASTAFKAN K, et al. Lattice matching oxygen evolution[J]. ACS Energy Letters, 2018, 4(1): 285-292.
growth of conductive hierarchical porous MOF/LDH heteronanotube [19] QIAN Q Z, LI Y P, LIU Y, et al. Ambient fast synthesis and active
arrays for highly efficient water oxidation[J]. Advanced Materials, sites deciphering of hierarchical foam-like trimetal-organic framework
2021, 33(8): 2006351-2006362. nanostructures as a platform for highly efficient oxygen evolution
[8] ZHOU Q, CHEN Y P, ZHAO G Q, et al. Active-site-enriched electrocatalysis[J]. Advanced Materials, 2019, 31(23): 1901139-
iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen 1901146.
evolution reaction[J]. ACS Catalysis, 2018, 8(6): 5382-5390. [20] TROTOCHAUD L, RANNEY J K, WILLIAMS K N, et al.
[9] HE P L, YU X Y, LOU X W. Carbon-incorporated nickel-cobalt Solution-cast metal oxide thin film electrocatalysts for oxygen
mixed metal phosphide nanoboxes with enhanced electrocatalytic evolution[J]. Journal of the American Chemical Society, 2012,
activity for oxygen evolution[J]. Angewandte Chemie International 134(41): 17253-17261.
Edition, 2017, 56(14): 3897-3900. [21] CHEN Z, CAI L, YANG X F, et al. Reversible structural evolution of
[10] KUAI C G, ZHANG Y, WU D Y, et al. Fully oxidized Ni-Fe layered NiCoO xH y during the oxygen evolution reaction and identification of
double hydroxide with 100% exposed active sites for catalyzing the catalytically active phase[J]. ACS Catalysis, 2018, 8(2): 1238-
oxygen evolution reaction[J]. ACS Catalysis, 2019, 9(7): 6027-6032. 1247.
[11] SONG F, HU X L. Ultrathin cobalt-manganese layered double [22] LI H B, YU M H, WANG F X, et al. Amorphous nickel hydroxide
hydroxide is an efficient oxygen evolution catalyst[J]. Journal of the nanospheres with ultrahigh capacitance and energy density as
American Chemical Society, 2014, 136(47): 16481-16484. electrochemical pseudo capacitor materials[J]. Nature Communications,
[12] RAJA S D, CHUAH X F, LU S Y. In situ grown bimetallic 2013, 4: 1894-1900.
MOF-based composite as highly efficient bifunctional electrocatalyst [23] MORALES O D, SUSPEDRA D F, KOPER M T. The importance of
for overall water splitting with ultrastability at high current densities[J]. nickel oxyhydroxide deprotonation on its activity towards
Advanced Energy Materials, 2018, 8(23): 1801065- 1801074. electrochemical water oxidation[J]. Chemical Science, 2016, 7(4):
[13] KONG L J, ZHU J, SHUANG W, et al. Nitrogen-doped wrinkled 2639-2645.
carbon foils derived from MOF nanosheets for superior sodium [24] TIAN J Y, JIANG F L, YUAN D Q, et al. Electric-field assisted in
storage[J]. Advanced Energy Materials, 2018, 8(25): 1801515-1801522. situ hydrolysis of bulk metal-organic frameworks (MOFs) into
[14] ZHOU J, DOU Y B, ZHOU A W, et al. Layered metal-organic ultrathin metal oxyhydroxide nanosheets for efficient oxygen
framework-derived metal oxide/carbon nanosheet arrays for evolution[J]. Angewandte Chemie International Edition, 2020,
catalyzing the oxygen evolution reaction[J]. ACS Energy Letters, 59(31): 13101-13108.
2018, 3(7): 1655-1661. [25] CHEN R, HUNG S F, ZHOU D J, et al. Layered structure causes
[15] WANG X Q, LI Q Q, YANG N N, et al. Hydrothermal synthesis of bulk NiFe layered double hydroxide unstable in alkaline oxygen
NiCo-based bimetal-organic frameworks as electrode materials for evolution reaction[J]. Advanced Materials, 2019, 31(41): 1903909-
supercapacitors[J]. Journal of Solid State Chemistry, 2019, 270: 1903915.
370-378. [26] UZUNOVA E L, MIKOSCH H, NIKOLOV G S. Electronic structure
[16] TROTOCHAUD L, YOUNG S L, RANNEY J K, et al. Nickel-iron of oxide, peroxide, and superoxide clusters of the 3d elements: A
oxyhydroxide oxygen-evolution electrocatalysts: The role of comparative density functional study[J]. The Journal of Chemical
intentional and incidental iron incorporation[J]. Journal of the Physics, 2008, 128(9): 094307-094319.
(上接第 1833 页) effects on cell proliferation, PGE(2) synthesis and cytotoxicity in
human colorectal carcinoma cell lines[J]. Carcinogenesis, 2003, 24(3):
[12] HU H (胡浩), DAI J K (戴佳锟), WANG L (王璐), et al. Chemical 385-392.
constituents and pharmacological effects of Arisaematis Rhizoma[J]. [17] LIU L (刘璐), ZHANG X Q (张先娇), QUAN X J (权晓娟), et al.
Chemistry of Life (生命的化学), 2020, 40(12): 2216-2225. Molecular mechanism of palmitic acid induced invasion and
[13] ROSE D P. Dietary fatty acids and cancer[J]. American Journal of metastasis of hepatoma carcinoma cells[J]. Progress in Modern
Clinical Nutrition, 1997, 66(S4): 998S-1003S. Biomedicine (现代生物医学进展), 2014, 14(22): 4223-4227.
[14] JIANG W G, HISCOX S, BRYCE R P, et al. The effects of n-6 [18] SHEN H L (申华莉), WANG Z X (王真昕), LIN L (林灵), et al.
polyunsaturated fatty acids on the expression of nm-23 in human Application of palmitic acid in the preparation of colon cancer drugs:
cancer cells[J]. British Journal of Cancer, 1998, 77(5): 731-738. CN201510087609.1[P]. 2016-10-05.
[15] PALAKURTHI S S, FLUCKIGER R, AKTAS H, et al. Inhibition of [19] SANTAS J, CODONY R, RAFECAS M. Phytosterols: Beneficial
translation initiation mediates the anticancer effect of the n-3 effects[M]. Berlin: Springer-Verlag Berlin Heidelberg, 2013: 3437-
polyunsaturated fatty acid eicosapentaenoic acid[J]. Cancer Research, 3464.
2000, 60(11): 2919-2925. [20] SHAHZAD N, KHAN W, SHADAB M D, et al. Phytosterols as a
[16] DOMMELS Y E, HARING M M, KEESTRA N G, et al. The role of natural anticancer agent: Current status and future perspective[J].
cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated Biomedicine & Pharmacotherapy, 2017, 88: 786-794.