Page 152 - 《精细化工》2021年第9期
P. 152

·1866·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 gamma-NiOOH[J]. Advanced Materials, 2021, 33(11): 2005587-   American Chemical Society, 2014, 136(18): 6744-6753.
                 2005596.                                      [17]  CHENG  W R, ZHAO  X, SU H,  et al. Lattice-strained metal-
            [6]   HUANG  Y, ZHANG S L, LU  X F,  et al. Trimetallic spinel   organic-framework arrays for bifunctional oxygen electrocatalysis[J].
                 NiCo 2-xFe xO 4 nanoboxes for highly efficient electrocatalytic oxygen   Nature Energy, 2019, 4(2): 115-122.
                 evolution[J]. Angewandte Chemie International Edition, 2021, DOI:   [18]  LI J T, HUANG W Z, WANG M M, et al. Low-crystalline bimetallic
                 10.1002/anie. 202103058.                          metal-organic framework electrocatalysts with rich active sites for
            [7]   WANG Y, YAN  L T, DASTAFKAN K,  et al. Lattice  matching   oxygen evolution[J]. ACS Energy Letters, 2018, 4(1): 285-292.
                 growth of conductive hierarchical porous MOF/LDH heteronanotube   [19]  QIAN Q Z, LI Y P, LIU Y, et al. Ambient fast synthesis and active
                 arrays for highly efficient water oxidation[J]. Advanced Materials,   sites deciphering of hierarchical foam-like trimetal-organic framework
                 2021, 33(8): 2006351-2006362.                     nanostructures as a platform for highly efficient oxygen evolution
            [8]   ZHOU Q, CHEN Y P, ZHAO G Q,  et al. Active-site-enriched   electrocatalysis[J].  Advanced Materials, 2019, 31(23):  1901139-
                 iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen   1901146.
                 evolution reaction[J]. ACS Catalysis, 2018, 8(6): 5382-5390.     [20]  TROTOCHAUD L, RANNEY J K, WILLIAMS K  N,  et al.
            [9]   HE P L, YU X  Y, LOU X  W. Carbon-incorporated nickel-cobalt   Solution-cast metal oxide thin  film electrocatalysts for oxygen
                 mixed  metal phosphide nanoboxes with enhanced electrocatalytic   evolution[J]. Journal of the American Chemical Society, 2012,
                 activity for  oxygen evolution[J]. Angewandte Chemie International   134(41): 17253-17261.
                 Edition, 2017, 56(14): 3897-3900.             [21]  CHEN Z, CAI L, YANG X F, et al. Reversible structural evolution of
            [10]  KUAI C G, ZHANG Y, WU D Y, et al. Fully oxidized Ni-Fe layered   NiCoO xH y during the oxygen evolution reaction and identification of
                 double hydroxide with 100% exposed active sites for  catalyzing   the catalytically  active phase[J]. ACS Catalysis, 2018, 8(2):  1238-
                 oxygen evolution reaction[J]. ACS Catalysis, 2019, 9(7): 6027-6032.     1247.
            [11]  SONG F, HU  X  L. Ultrathin cobalt-manganese layered double   [22]  LI H B, YU M H, WANG F X, et al. Amorphous nickel hydroxide
                 hydroxide is an efficient oxygen evolution catalyst[J]. Journal of the   nanospheres with  ultrahigh capacitance  and energy density as
                 American Chemical Society, 2014, 136(47): 16481-16484.     electrochemical  pseudo capacitor materials[J]. Nature Communications,
            [12]  RAJA S D, CHUAH X F, LU S Y.  In situ grown  bimetallic   2013, 4: 1894-1900.
                 MOF-based composite as highly efficient bifunctional electrocatalyst   [23]  MORALES O D, SUSPEDRA D F, KOPER M T. The importance of
                 for overall water splitting with ultrastability at high current densities[J].   nickel oxyhydroxide deprotonation on its activity towards
                 Advanced Energy Materials, 2018, 8(23): 1801065- 1801074.     electrochemical  water oxidation[J]. Chemical Science, 2016, 7(4):
            [13]  KONG L J, ZHU  J, SHUANG  W,  et al. Nitrogen-doped wrinkled   2639-2645.
                 carbon  foils  derived from MOF nanosheets  for superior sodium   [24]  TIAN J Y, JIANG F L, YUAN D Q, et al. Electric-field assisted in
                 storage[J]. Advanced Energy Materials, 2018, 8(25): 1801515-1801522.     situ  hydrolysis  of bulk metal-organic frameworks (MOFs) into
            [14]  ZHOU J, DOU  Y B, ZHOU A W,  et al. Layered  metal-organic   ultrathin metal oxyhydroxide nanosheets for efficient oxygen
                 framework-derived  metal oxide/carbon nanosheet arrays for   evolution[J].  Angewandte Chemie International Edition, 2020,
                 catalyzing the oxygen evolution reaction[J]. ACS Energy Letters,   59(31): 13101-13108.
                 2018, 3(7): 1655-1661.                        [25]  CHEN R, HUNG  S F, ZHOU  D J,  et al. Layered structure causes
            [15]  WANG X Q, LI Q Q, YANG N N, et al. Hydrothermal synthesis of   bulk NiFe layered double hydroxide unstable in alkaline oxygen
                 NiCo-based bimetal-organic frameworks as electrode materials for   evolution reaction[J]. Advanced Materials, 2019, 31(41):  1903909-
                 supercapacitors[J]. Journal of Solid State  Chemistry,  2019,  270:   1903915.
                 370-378.                                      [26]  UZUNOVA E L, MIKOSCH H, NIKOLOV G S. Electronic structure
            [16]  TROTOCHAUD L, YOUNG S L, RANNEY J K, et al. Nickel-iron   of oxide, peroxide, and superoxide clusters  of the 3d elements: A
                 oxyhydroxide oxygen-evolution electrocatalysts: The role of   comparative density functional study[J].  The Journal of Chemical
                 intentional and incidental iron incorporation[J]. Journal of the   Physics, 2008, 128(9): 094307-094319.


            (上接第 1833 页)                                           effects on cell proliferation, PGE(2) synthesis and cytotoxicity in
                                                                   human colorectal carcinoma cell lines[J]. Carcinogenesis, 2003, 24(3):
            [12]  HU H (胡浩), DAI J K (戴佳锟), WANG L (王璐), et al. Chemical   385-392.
                 constituents and pharmacological effects of Arisaematis Rhizoma[J].   [17]  LIU L (刘璐), ZHANG X Q (张先娇), QUAN X J (权晓娟), et al.
                 Chemistry of Life (生命的化学), 2020, 40(12): 2216-2225.   Molecular mechanism of palmitic acid induced invasion and
            [13]  ROSE D P. Dietary fatty  acids  and cancer[J]. American Journal of   metastasis of hepatoma  carcinoma  cells[J]. Progress in Modern
                 Clinical Nutrition, 1997, 66(S4): 998S-1003S.     Biomedicine (现代生物医学进展), 2014, 14(22): 4223-4227.
            [14]  JIANG W G, HISCOX S,  BRYCE  R P,  et al.  The effects of n-6   [18]  SHEN H L (申华莉), WANG Z  X (王真昕), LIN  L (林灵),  et al.
                 polyunsaturated fatty acids on the expression of  nm-23 in human   Application of palmitic acid in the preparation of colon cancer drugs:
                 cancer cells[J]. British Journal of Cancer, 1998, 77(5): 731-738.     CN201510087609.1[P]. 2016-10-05.
            [15]  PALAKURTHI S S, FLUCKIGER R, AKTAS H, et al. Inhibition of   [19]  SANTAS J,  CODONY R, RAFECAS M. Phytosterols: Beneficial
                 translation initiation mediates the anticancer effect of the n-3   effects[M]. Berlin:  Springer-Verlag Berlin Heidelberg, 2013: 3437-
                 polyunsaturated fatty acid eicosapentaenoic acid[J]. Cancer Research,   3464.
                 2000, 60(11): 2919-2925.                      [20]  SHAHZAD N, KHAN W, SHADAB M D, et al. Phytosterols as a
            [16]  DOMMELS Y E, HARING M M, KEESTRA N G, et al. The role of   natural anticancer  agent: Current status and future perspective[J].
                 cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated   Biomedicine & Pharmacotherapy, 2017, 88: 786-794.
   147   148   149   150   151   152   153   154   155   156   157