Page 144 - 《精细化工》2022年第1期
P. 144

·134·                             精细化工   FINE CHEMICALS                                 第 39 卷

            化剂 Pd/GO、Pd/rGO 和 Pd/C-HNO 3 ,其中 rGO 纳                 characterization of Ni-B/SiO 2 sol amorphous catalyst and its catalytic
            米片高效网络结构和 Pd 纳米粒子之间良好的耦合                               activity for hydrogenation of nitrobenzene[J]. Catalysis Communications,
                                                                   2016, 85: 17-21.
            作用促使其在 3 种碳材料中表现出最高的 Pd 金属比                        [10]  BAO Y (鲍艳), WANG F T (王飞彤). Advances in preparation and
                                            2
            表面积和分散度,分别为 178.37 m /g 和 43.75%。                      pore size regulation of mesoporous silica by template  method[J].
                                                                   Fine Chemicals (精细化工), 2020, 37(10): 1957-1964.
            相比于 Pd/GO 和 Pd/C-HNO 3 ,Pd/rGO 表现出最高
                                                               [11]  WANG  H,  LIU X  H, XU G Y,  et al.  In situ synthesis of Fe-N-C
            的硝基苯转化率,其催化性能也优于市售 Pd/C。                               catalysts from cellulose for  hydrogenation  of  nitrobenzene to
            Pd/rGO 催化硝基苯转化时,苯胺产率随反应时间呈                             aniline[J]. Chinese Journal of Catalysis, 2019, 40(10): 1557-1565.
                                                               [12]  LI J Y, MA L, LI X N, et al. Effect of nitric acid pretreatment on the
            上升趋势。反应 100 min 时,硝基苯完全转化,苯                            properties of activated carbon and supported palladium catalysts[J].
            胺产率也提高到 100%。此外,Pd/rGO 易于回收和                           Industrial and Engineering Chemistry Research, 2005, 44(15): 5478-
                                                                   5482.
            重复使用,使用 10 次后,Pd/rGO 仍可催化硝基苯
                                                               [13]  LI H (李鹤), SONG H Q (宋焕巧), LUO M S (罗明生). Effect of
            高效转化,获得 97.1%的苯胺产率,是一种稳定高                              calcination temperature on cobalt-carbon nanotube composite catalysts
            效的硝基苯加氢催化剂。Pd/rGO 易于制备的方法和                             for Fischer-Tropsch reaction[J]. Fine Chemicals (精细化工), 2018,
                                                                   35(5): 775-784.
            独特的催化活性使 rGO 在多相催化中具有巨大的应
                                                               [14]  HERMANS S, DIVERCHY C, DUBOIS V, et al. Pd nanoparticles
            用潜力。                                                   prepared by grafting  of Pd complexes on phenol-functionalized
                                                                   carbon supports for liquid phase catalytic applications[J]. Applied
            参考文献:                                                  Catalysis A: General, 2014, 474: 263-271.
                                                               [15]  LI D, KANER R B. Materials science. Graphene-based materials[J].
            [1]   MENG X C, CHENG H, AKIYAMA Y, et al. Selective hydrogenation
                                                                   Science, 2008, 320(5880): 1170-1171.
                 of nitrobenzene to aniline in dense phase carbon dioxide over
                                                               [16] WANG  C  (王成),  HUANG H X (黄红霞), XIAO Y (肖阳),  et al.
                 Ni/γ-Al 2O 3: Significance of molecular interactions[J]. Journal of
                                                                   Preparation and properties of graphene/Sr 2Ni 0.4Co 1.6O 6 composites[J].
                 Catalysis, 2009, 264(1): 1-10.
                                                                   Fine Chemicals (精细化工), 2019, 36(8): 1550-1555.
            [2]   LIU Y G, LU Y S, PRASHAD M, et al. A practical and chemoselective
                                                               [17]  TARCAN R, TODOR-BOER O, PETROVAI I,  et al. Reduced
                 reduction of nitroarenes to anilines using activated iron[J]. Advanced
                                                                   graphene oxide today[J]. Journal of Materials Chemistry C, 2020,
                 Synthesis & Catalysis, 2005, 347(2/3): 217-219.
                                                                   8(4): 1198-1224.
            [3]   KELLY S M,  LIPSHUTZ B  H. Chemoselective reductions  of
                                                               [18]  RAJALAKSHMI N, RAMAPRABHU S, JAFRI R I. Nitrogen doped
                 nitroaromatics in water at room temperature[J]. Organic Letters,
                                                                   graphene nanoplatelets  as  catalyst support for oxygen  reduction
                 2014, 16(1): 98-101.
                                                                   reaction in proton exchange  membrane fuel  cell[J]. Journal of
            [4]   SHI W, ZHANG  B S, LIN Y M,  et al. Enhanced chemoselective
                                                                   Materials Chemistry, 2010, 20(34): 7114-7117.
                 hydrogenation through tuning the interaction between Pt nanoparticles
                                                               [19]  SHANG N G, PAPAKONSTANTINOU P, WANG P, et al. Platinum
                 and carbon  supports: Insights from iIdentical location transmission
                                                                   integrated graphene for methanol fuel cells[J]. The Journal of
                 electron microscopy and X-ray photoelectron spectroscopy[J]. ACS
                                                                   Physical Chemistry C, 2010, 114(37): 15837-15841.
                 Catalysis, 2016, 6(11): 7844-7854.
                                                               [20]  ZHANG W B (张文博), LI S C (李思纯), MA J Z (马建中), et al.
            [5]   WANG C X, YANG F, YANG W, et al. PdO nanoparticles enhancing
                                                                   Application of graphene oxide/natural polymer composite adsorbents
                 the catalytic activity of Pd/carbon  nanotubes  for 4-nitrophenol
                                                                   in water treatment[J]. Fine Chemicals (精细化工), 2021, 38(4): 683-
                 reduction[J]. RSC Advances, 2015, 5(35): 27526-27532.
                                                                   693.
            [6]   ZHANG S, CHANG C R, HUANG Z Q, et al. High catalytic activity
                                                               [21]  RAVIKOVITCH P  I, VISHNYAKOV  A, RUSSO R, et al. Unified
                 and chemoselectivity of sub-nanometric Pd clusters on porous
                                                                   approach to pore size characterization of microporous carbonaceous
                 nanorods of CeO 2 for hydrogenation of nitroarenes[J]. Journal of the
                                                                   materials from N 2, Ar, and CO 2 adsorption isotherms[J]. Langmuir,
                 American Chemical Society, 2016, 138(8): 2629-2637.
            [7]   LYU J H, WANG  J G, LU C S,  et al. Size-dependent halogenated   2000, 16(5): 2311-2320.
                 nitrobenzene hydrogenation selectivity of Pd nanoparticles[J].   [22]  XU X, TANG M H, LI M M, et al. Hydrogenation of benzoic acid
                 Journal of Physical Chemistry C, 2014, 118(5): 2594-2601.     and derivatives over Pd nanoparticles supported on N-doped carbon
            [8]   JIA F L, ZHANG L Z, SHANG X Y,  et al. Non-aqueous sol-gel   derived from glucosamine hydrochloride[J]. ACS Catalysis, 2014,
                 approach towards the controllable synthesis of nickel nanospheres,   4(9): 3132-3135.
                 nanowires, and nanoflowers[J]. Advanced Materials, 2008, 20(5):   [23]  HU Z, LIU X F, MENG D M, et al. Effect of ceria crystal plane on
                 1050-1054.                                        the physicochemical and catalytic properties of Pd/ceria for CO and
            [9]   LIU Z L, LI Y N, HUANG X  Y,  et al. Preparation and   propane oxidation[J]. ACS Catalysis, 2016, 6(4): 2265-2279.
   139   140   141   142   143   144   145   146   147   148   149