Page 144 - 《精细化工》2022年第1期
P. 144
·134· 精细化工 FINE CHEMICALS 第 39 卷
化剂 Pd/GO、Pd/rGO 和 Pd/C-HNO 3 ,其中 rGO 纳 characterization of Ni-B/SiO 2 sol amorphous catalyst and its catalytic
米片高效网络结构和 Pd 纳米粒子之间良好的耦合 activity for hydrogenation of nitrobenzene[J]. Catalysis Communications,
2016, 85: 17-21.
作用促使其在 3 种碳材料中表现出最高的 Pd 金属比 [10] BAO Y (鲍艳), WANG F T (王飞彤). Advances in preparation and
2
表面积和分散度,分别为 178.37 m /g 和 43.75%。 pore size regulation of mesoporous silica by template method[J].
Fine Chemicals (精细化工), 2020, 37(10): 1957-1964.
相比于 Pd/GO 和 Pd/C-HNO 3 ,Pd/rGO 表现出最高
[11] WANG H, LIU X H, XU G Y, et al. In situ synthesis of Fe-N-C
的硝基苯转化率,其催化性能也优于市售 Pd/C。 catalysts from cellulose for hydrogenation of nitrobenzene to
Pd/rGO 催化硝基苯转化时,苯胺产率随反应时间呈 aniline[J]. Chinese Journal of Catalysis, 2019, 40(10): 1557-1565.
[12] LI J Y, MA L, LI X N, et al. Effect of nitric acid pretreatment on the
上升趋势。反应 100 min 时,硝基苯完全转化,苯 properties of activated carbon and supported palladium catalysts[J].
胺产率也提高到 100%。此外,Pd/rGO 易于回收和 Industrial and Engineering Chemistry Research, 2005, 44(15): 5478-
5482.
重复使用,使用 10 次后,Pd/rGO 仍可催化硝基苯
[13] LI H (李鹤), SONG H Q (宋焕巧), LUO M S (罗明生). Effect of
高效转化,获得 97.1%的苯胺产率,是一种稳定高 calcination temperature on cobalt-carbon nanotube composite catalysts
效的硝基苯加氢催化剂。Pd/rGO 易于制备的方法和 for Fischer-Tropsch reaction[J]. Fine Chemicals (精细化工), 2018,
35(5): 775-784.
独特的催化活性使 rGO 在多相催化中具有巨大的应
[14] HERMANS S, DIVERCHY C, DUBOIS V, et al. Pd nanoparticles
用潜力。 prepared by grafting of Pd complexes on phenol-functionalized
carbon supports for liquid phase catalytic applications[J]. Applied
参考文献: Catalysis A: General, 2014, 474: 263-271.
[15] LI D, KANER R B. Materials science. Graphene-based materials[J].
[1] MENG X C, CHENG H, AKIYAMA Y, et al. Selective hydrogenation
Science, 2008, 320(5880): 1170-1171.
of nitrobenzene to aniline in dense phase carbon dioxide over
[16] WANG C (王成), HUANG H X (黄红霞), XIAO Y (肖阳), et al.
Ni/γ-Al 2O 3: Significance of molecular interactions[J]. Journal of
Preparation and properties of graphene/Sr 2Ni 0.4Co 1.6O 6 composites[J].
Catalysis, 2009, 264(1): 1-10.
Fine Chemicals (精细化工), 2019, 36(8): 1550-1555.
[2] LIU Y G, LU Y S, PRASHAD M, et al. A practical and chemoselective
[17] TARCAN R, TODOR-BOER O, PETROVAI I, et al. Reduced
reduction of nitroarenes to anilines using activated iron[J]. Advanced
graphene oxide today[J]. Journal of Materials Chemistry C, 2020,
Synthesis & Catalysis, 2005, 347(2/3): 217-219.
8(4): 1198-1224.
[3] KELLY S M, LIPSHUTZ B H. Chemoselective reductions of
[18] RAJALAKSHMI N, RAMAPRABHU S, JAFRI R I. Nitrogen doped
nitroaromatics in water at room temperature[J]. Organic Letters,
graphene nanoplatelets as catalyst support for oxygen reduction
2014, 16(1): 98-101.
reaction in proton exchange membrane fuel cell[J]. Journal of
[4] SHI W, ZHANG B S, LIN Y M, et al. Enhanced chemoselective
Materials Chemistry, 2010, 20(34): 7114-7117.
hydrogenation through tuning the interaction between Pt nanoparticles
[19] SHANG N G, PAPAKONSTANTINOU P, WANG P, et al. Platinum
and carbon supports: Insights from iIdentical location transmission
integrated graphene for methanol fuel cells[J]. The Journal of
electron microscopy and X-ray photoelectron spectroscopy[J]. ACS
Physical Chemistry C, 2010, 114(37): 15837-15841.
Catalysis, 2016, 6(11): 7844-7854.
[20] ZHANG W B (张文博), LI S C (李思纯), MA J Z (马建中), et al.
[5] WANG C X, YANG F, YANG W, et al. PdO nanoparticles enhancing
Application of graphene oxide/natural polymer composite adsorbents
the catalytic activity of Pd/carbon nanotubes for 4-nitrophenol
in water treatment[J]. Fine Chemicals (精细化工), 2021, 38(4): 683-
reduction[J]. RSC Advances, 2015, 5(35): 27526-27532.
693.
[6] ZHANG S, CHANG C R, HUANG Z Q, et al. High catalytic activity
[21] RAVIKOVITCH P I, VISHNYAKOV A, RUSSO R, et al. Unified
and chemoselectivity of sub-nanometric Pd clusters on porous
approach to pore size characterization of microporous carbonaceous
nanorods of CeO 2 for hydrogenation of nitroarenes[J]. Journal of the
materials from N 2, Ar, and CO 2 adsorption isotherms[J]. Langmuir,
American Chemical Society, 2016, 138(8): 2629-2637.
[7] LYU J H, WANG J G, LU C S, et al. Size-dependent halogenated 2000, 16(5): 2311-2320.
nitrobenzene hydrogenation selectivity of Pd nanoparticles[J]. [22] XU X, TANG M H, LI M M, et al. Hydrogenation of benzoic acid
Journal of Physical Chemistry C, 2014, 118(5): 2594-2601. and derivatives over Pd nanoparticles supported on N-doped carbon
[8] JIA F L, ZHANG L Z, SHANG X Y, et al. Non-aqueous sol-gel derived from glucosamine hydrochloride[J]. ACS Catalysis, 2014,
approach towards the controllable synthesis of nickel nanospheres, 4(9): 3132-3135.
nanowires, and nanoflowers[J]. Advanced Materials, 2008, 20(5): [23] HU Z, LIU X F, MENG D M, et al. Effect of ceria crystal plane on
1050-1054. the physicochemical and catalytic properties of Pd/ceria for CO and
[9] LIU Z L, LI Y N, HUANG X Y, et al. Preparation and propane oxidation[J]. ACS Catalysis, 2016, 6(4): 2265-2279.