Page 25 - 《精细化工》2022年第1期
P. 25
第 1 期 段正康,等: 水滑石材料用于催化脱氢的研究进展 ·15·
目前,LDHs 在催化领域的应用已越来越受到 dehydrogenation reaction of dimethylamine borane at room
重视,但是对于催化剂结构的多样定制、活性位点 temperature[J]. International Journal of Hydrogen Energy, 2020,
45(21): 11916-11922.
的精确识别和催化机理的详细洞察仍是一个巨大的 [10] ZHANG X P, DUAN Z K, WU Y Y, et al. Sintering-resistant and
挑战,基于这些问题和挑战,未来的研究方向宜从 highly active boron oxide doped B xCuZrO 2 catalyst for catalytic
diethanolamine dehydrogenation[J]. Chemical Engineering Science,
以下方面进行研讨:
2021, 246: 116897-116906.
第一、探究并解决在利用 LDHs 的独特性能开 [11] ZHANG H W, TAN H R, JAENICKE S, et al. Highly efficient and
发催化脱氢材料过程中出现的问题;如酸性或中性 robust Cu catalyst for non-oxidative dehydrogenation of ethanol to
acetaldehyde and hydrogen[J]. Journal of Catalysis, 2020, 389:
条件下,LDHs 层间阳离子浸出、LDHs 微孔易堵塞、 19-28.
剥离纳米片催化中心受到扩散限制等;同时开发更 [12] FAN G L, LI F, EVANS D G, et al. Catalytic applications of layered
加全面和精准的表征技术,充分理解活性物质及活 double hydroxides: Recent advances and perspectives[J]. Chemical
Society Reviews, 2014, 43(20): 7040-7066.
性位点、多组分协同作用和金属-载体相互作用以及 [13] LIU Y (刘艳). Adsorption of perchlorate by calcined layered double
由此产生的催化脱氢机制; hydroxide[D]. Hangzhou: Zhejiang University of Technology (浙江
工业大学), 2015.
第二、鉴于中国目前为实现“碳达峰”和“碳
[14] TAKEHIRA K. Recent development of layered double hydroxide-
中和”的远景目标,因此,可以充分开发以 LDHs derived catalysts—Rehydration, reconstitution, and supporting,
为基础原料的催化材料,推动氢能源产业发展,实 aiming at commercial application[J]. Applied Clay Science, 2017,
136: 112-141.
现低能耗、少污染、高质量的绿色发展道路;此外, [15] JOUYBAN A, AMINI R. Layered double hydroxides as an efficient
如烯、醛、酮和胺类等重要化工原料的工业生产, nanozyme for analytical applications[J]. Microchemical Journal,
可利用 LDHs 的独特优势寻找高性能的催化剂体 2021, 164:105970-105980.
[16] JIA H H, ZHAO Y, NIU P P, et al. Amine-functionalized MgAl LDH
系,以扩展其大规模催化脱氢生产和工业应用; nanosheets as efficient solid base catalysts for knoevenagel
第三、聚焦石化和化工行业“十四五”化工新 condensation[J]. Molecular Catalysis, 2018, 449: 31-37.
[17] KULJIRASETH J, WANGRIYA A, MALONES J M C, et al.
材料产业发展的战略和任务,充分开发并利用 LDHs
Synthesis and characterization of AMO LDH-derived mixed oxides
以实现未来新材料结构功能复合化和智能化、材料 with various Mg/Al ratios as acid-basic catalysts for esterification of
与器件集成化以及发展方向绿色化。 benzoic acid with 2-ethylhexanol[J]. Applied Catalysis B:
Environmental, 2019, 243: 415-427.
参考文献: [18] SHE Q M, HUANG W J, TALEBIAN-KIAKALAIEH A, et al.
Layered double hydroxide uniformly coated on mesoporous silica
[1] GURRAM V R B, ENUMULA S S, KONDEBOINA M, et al. Role with tunable morphorlogies for catalytic transesterification of
of the feed gas on the selective catalytic dehydrogenation of benzyl glycerol with dimethyl carbonate[J]. Applied Clay Science, 2021,
alcohol over Cu/hydrotalcite catalyst[J]. ChemistrySelect, 2018, 210: 106135-106149.
3(28): 8277-8284. [19] ROMERO A, JOBBÁGY M, LABORDE M, et al. Ni(Ⅱ)-Mg(Ⅱ)-
[2] LAN X L (兰小林), DUAN Z K (段正康), XU J X (徐金霞), et al. Al( Ⅲ ) catalysts for hydrogen production from ethanol steam
Research advance in dehydrogenation process of diethanolamine reforming: Influence of the Mg content[J]. Applied Catalysis A:
based on Cu-based catalysts[J]. Fine Chemicals (精细化工), 2019, General, 2014, 470: 398-404.
36(7): 1286-1293. [20] BELSKAYA O B, STEPANOVA L N, GULYAEVA T I, et al. Study
[3] BULGARIN A, JORSCHICK H, PREUSTER P, et al. Purity of of Pt/MgAlO x catalysts in n-decane dehydrogenation[J]. Kinetics and
hydrogen released from the liquid organic hydrogen carrier
Catalysis, 2015, 56(5): 655-662.
compound perhydro dibenzyltoluene by catalytic dehydrogenation[J].
[21] ROSSET M, PEREZ-LOPEZ O W. Cu-Ca-Al catalysts derived from
International Journal of Hydrogen Energy, 2020, 45(1): 712-720.
hydrocalumite and their application to ethanol dehydrogenation[J].
[4] MARTINELLI M, CASTRO J D, ALHRAKI N, et al. Effect of
Reaction Kinetics, Mechanisms and Catalysis, 2018, 126(1): 497-511.
sodium loading on Pt/ZrO 2 during ethanol steam reforming[J].
[22] TANASOI S, MITRAN G, TANCHOUX N, et al. Transition
Applied Catalysis A: General, 2021, 610: 117947-117963.
metal-containing mixed oxides catalysts derived from LDH
[5] LI X L, ZHANG Z M, ZHANG L J, et al. Availability of steam
precursors for short-chain hydrocarbons oxidation[J]. Applied
impacts coke properties in steam reforming of acetic acid[J].
Catalysis A: General, 2011, 395(1/2): 78-86.
International Journal of Hydrogen Energy, 2021, 46(10): 7195-7210.
[23] STAMATE A E, PAVEL O D, ZAVOIANU R, et al. Highlights on
[6] VEDRINE J C. Heterogeneous catalytic partial oxidation of lower
the catalytic properties of polyoxometalate-intercalated layered
alkanes (C 1~C 6) on mixed metal oxides[J]. Journal of Energy
double hydroxides: A review[J]. Catalysts, 2020, 10(1): 57-96.
Chemistry, 2016, 25(6): 936-946.
[24] LI T F, MIRAS H N, SONG Y F. Polyoxometalate (POM)-layered
[7] HAJARI A, ROY B, SHARMA P. Metal-free rapid dehydrogenation
double hydroxides (LDH) composite materials: Design and catalytic
kinetics and better regeneration yield of ammonia borane[J].
applications[J]. Catalysts, 2017, 7(9): 260-276.
International Journal of Hydrogen Energy, 2021, 46(47): 24214-
[25] SUBRAMANIAN T, DHAKSHINAMOORTHY A, PITCHUMANI
24224.
K. Amino acid intercalated layered double hydroxide catalyzed
[8] DEKA J R, SAIKIA D, LU N F, et al. Space confined synthesis of
chemoselective methylation of phenols and thiophenols with
highly dispersed bimetallic CoCu nanoparticles as effective catalysts dimethyl carbonate[J]. Tetrahedron Letters, 2013, 54(52): 7167-7170.
for ammonia borane dehydrogenation and 4-nitrophenol reduction[J]. [26] VARGA G, KÓNYA Z, KUKOVECZ Á, et al. Co( Ⅱ )-amino
Applied Surface Science, 2021, 538: 148091-148105. acid-CaAl-layered double hydroxide composites—Construction and
[9] AL-MAHAMAD L L G. Gold nanoparticles as a catalyst for
characterization[J]. Journal of Molecular Structure, 2019, 1179: