Page 25 - 《精细化工》2022年第1期
P. 25

第 1 期                        段正康,等:  水滑石材料用于催化脱氢的研究进展                                     ·15·


                 目前,LDHs 在催化领域的应用已越来越受到                            dehydrogenation reaction of dimethylamine borane at room
            重视,但是对于催化剂结构的多样定制、活性位点                                 temperature[J]. International  Journal of Hydrogen Energy, 2020,
                                                                   45(21): 11916-11922.
            的精确识别和催化机理的详细洞察仍是一个巨大的                             [10]  ZHANG X P, DUAN Z K, WU Y Y, et al. Sintering-resistant and
            挑战,基于这些问题和挑战,未来的研究方向宜从                                 highly active boron oxide doped B xCuZrO 2 catalyst for catalytic
                                                                   diethanolamine dehydrogenation[J]. Chemical Engineering Science,
            以下方面进行研讨:
                                                                   2021, 246: 116897-116906.
                 第一、探究并解决在利用 LDHs 的独特性能开                       [11]  ZHANG H W, TAN H R, JAENICKE S, et al. Highly efficient and
            发催化脱氢材料过程中出现的问题;如酸性或中性                                 robust Cu catalyst for non-oxidative dehydrogenation of ethanol to
                                                                   acetaldehyde and  hydrogen[J]. Journal of Catalysis, 2020, 389:
            条件下,LDHs 层间阳离子浸出、LDHs 微孔易堵塞、                           19-28.
            剥离纳米片催化中心受到扩散限制等;同时开发更                             [12]  FAN G L, LI F, EVANS D G, et al. Catalytic applications of layered
            加全面和精准的表征技术,充分理解活性物质及活                                 double hydroxides: Recent advances and perspectives[J]. Chemical
                                                                   Society Reviews, 2014, 43(20): 7040-7066.
            性位点、多组分协同作用和金属-载体相互作用以及                            [13]  LIU Y (刘艳). Adsorption of perchlorate by calcined layered double
            由此产生的催化脱氢机制;                                           hydroxide[D]. Hangzhou: Zhejiang University of Technology (浙江
                                                                   工业大学), 2015.
                 第二、鉴于中国目前为实现“碳达峰”和“碳
                                                               [14]  TAKEHIRA K. Recent development of layered double  hydroxide-
            中和”的远景目标,因此,可以充分开发以 LDHs                               derived catalysts—Rehydration, reconstitution, and supporting,
            为基础原料的催化材料,推动氢能源产业发展,实                                 aiming at commercial application[J].  Applied Clay Science, 2017,
                                                                   136: 112-141.
            现低能耗、少污染、高质量的绿色发展道路;此外,                            [15]  JOUYBAN A, AMINI R. Layered double hydroxides as an efficient
            如烯、醛、酮和胺类等重要化工原料的工业生产,                                 nanozyme for analytical applications[J]. Microchemical Journal,
            可利用 LDHs 的独特优势寻找高性能的催化剂体                               2021, 164:105970-105980.
                                                               [16]  JIA H H, ZHAO Y, NIU P P, et al. Amine-functionalized MgAl LDH
            系,以扩展其大规模催化脱氢生产和工业应用;                                  nanosheets as efficient solid  base catalysts for knoevenagel
                 第三、聚焦石化和化工行业“十四五”化工新                              condensation[J]. Molecular Catalysis, 2018, 449: 31-37.
                                                               [17]  KULJIRASETH J,  WANGRIYA A,  MALONES J M  C,  et al.
            材料产业发展的战略和任务,充分开发并利用 LDHs
                                                                   Synthesis and characterization of AMO LDH-derived mixed oxides
            以实现未来新材料结构功能复合化和智能化、材料                                 with various Mg/Al ratios as acid-basic catalysts for esterification of
            与器件集成化以及发展方向绿色化。                                       benzoic acid with 2-ethylhexanol[J]. Applied Catalysis B:
                                                                   Environmental, 2019, 243: 415-427.
            参考文献:                                              [18]  SHE Q M,  HUANG  W J,  TALEBIAN-KIAKALAIEH A,  et al.
                                                                   Layered double hydroxide uniformly  coated on mesoporous  silica
            [1]   GURRAM V R B, ENUMULA S S, KONDEBOINA M, et al. Role   with tunable morphorlogies for catalytic transesterification of
                 of the feed gas on the selective catalytic dehydrogenation of benzyl   glycerol with dimethyl carbonate[J].  Applied Clay Science, 2021,
                 alcohol over Cu/hydrotalcite catalyst[J]. ChemistrySelect, 2018,   210: 106135-106149.
                 3(28): 8277-8284.                             [19]  ROMERO A, JOBBÁGY M, LABORDE M, et al. Ni(Ⅱ)-Mg(Ⅱ)-
            [2]   LAN X L (兰小林), DUAN Z K (段正康), XU J X (徐金霞), et al.   Al( Ⅲ ) catalysts  for hydrogen production from ethanol steam
                 Research advance  in dehydrogenation process of diethanolamine   reforming: Influence of the Mg content[J]. Applied Catalysis A:
                 based on Cu-based catalysts[J]. Fine  Chemicals (精细化工), 2019,   General, 2014, 470: 398-404.
                 36(7): 1286-1293.                             [20]  BELSKAYA O B, STEPANOVA L N, GULYAEVA T I, et al. Study
            [3]   BULGARIN  A, JORSCHICK H, PREUSTER P,  et al.  Purity of   of Pt/MgAlO x catalysts in n-decane dehydrogenation[J]. Kinetics and
                 hydrogen released from the liquid organic hydrogen carrier
                                                                   Catalysis, 2015, 56(5): 655-662.
                 compound perhydro dibenzyltoluene by catalytic dehydrogenation[J].
                                                               [21]  ROSSET M, PEREZ-LOPEZ O W. Cu-Ca-Al catalysts derived from
                 International Journal of Hydrogen Energy, 2020, 45(1): 712-720.
                                                                   hydrocalumite and  their application to ethanol dehydrogenation[J].
            [4]   MARTINELLI M,  CASTRO J  D, ALHRAKI N,  et al.  Effect of
                                                                   Reaction Kinetics, Mechanisms and Catalysis, 2018, 126(1): 497-511.
                 sodium loading on Pt/ZrO 2 during ethanol steam reforming[J].
                                                               [22]  TANASOI S, MITRAN G,  TANCHOUX N,  et al.  Transition
                 Applied Catalysis A: General, 2021, 610: 117947-117963.
                                                                   metal-containing  mixed oxides catalysts derived from LDH
            [5]   LI X L, ZHANG  Z M, ZHANG L J,  et al.  Availability of  steam
                                                                   precursors for short-chain hydrocarbons oxidation[J]. Applied
                 impacts  coke properties in steam  reforming of acetic  acid[J].
                                                                   Catalysis A: General, 2011, 395(1/2): 78-86.
                 International Journal of Hydrogen Energy, 2021, 46(10): 7195-7210.
                                                               [23]  STAMATE A E, PAVEL O D, ZAVOIANU R, et al. Highlights on
            [6]   VEDRINE J C. Heterogeneous catalytic partial oxidation of lower
                                                                   the catalytic properties of polyoxometalate-intercalated layered
                 alkanes (C 1~C 6) on mixed  metal oxides[J]. Journal of Energy
                                                                   double hydroxides: A review[J]. Catalysts, 2020, 10(1): 57-96.
                 Chemistry, 2016, 25(6): 936-946.
                                                               [24]  LI T F, MIRAS H N, SONG Y F. Polyoxometalate (POM)-layered
            [7]   HAJARI A, ROY B, SHARMA P. Metal-free rapid dehydrogenation
                                                                   double hydroxides (LDH) composite materials: Design and catalytic
                 kinetics and  better regeneration yield of ammonia borane[J].
                                                                   applications[J]. Catalysts, 2017, 7(9): 260-276.
                 International Journal of Hydrogen Energy, 2021, 46(47): 24214-
                                                               [25]  SUBRAMANIAN T, DHAKSHINAMOORTHY A, PITCHUMANI
                 24224.
                                                                   K. Amino acid intercalated layered  double hydroxide catalyzed
            [8]   DEKA J R, SAIKIA D, LU N F, et al. Space confined synthesis of
                                                                   chemoselective  methylation  of phenols and thiophenols with
                 highly dispersed bimetallic CoCu nanoparticles as effective catalysts   dimethyl carbonate[J]. Tetrahedron Letters, 2013, 54(52): 7167-7170.
                 for ammonia borane dehydrogenation and 4-nitrophenol reduction[J].   [26]  VARGA G,  KÓNYA Z, KUKOVECZ Á,  et al.  Co( Ⅱ )-amino
                 Applied Surface Science, 2021, 538: 148091-148105.     acid-CaAl-layered double hydroxide composites—Construction and
            [9]   AL-MAHAMAD  L L G. Gold nanoparticles as a catalyst for
                                                                   characterization[J]. Journal of Molecular Structure, 2019, 1179:
   20   21   22   23   24   25   26   27   28   29   30