Page 41 - 《精细化工》2022年第10期
P. 41

第 10 期                         王瑞雪,等:  水分解制氢中的电解液调控机制                                   ·1975·


            [57]  ZHANG J, SHENG W C,  ZHUANG Z  B,  et al. Universal   splitting[J]. The Journal of Physical Chemistry B, 2015, 119: 3560-
                 dependence of hydrogen oxidation and evolution reaction activity of   3566.
                 platinum-group metals on pH and hydrogen binding energy[J].   [70]  SUBBARAMAN R, TRIPKOVIC D, STRMCNIK D, et al. Enhancing
                                                                                                            +
                 Science Advances, 2016, 2(3): e1501602.           hydrogen evolution activity in water splitting by tailoring Li -
            [58]  ZHU Q, DUAN R, JI H W, et al. Interfacial proton-coupled electron   Ni(OH) 2-Pt interfaces[J]. Science, 2011, 334: 1256-1260.
                 transfer in metal oxide semiconductor photocatalysis[J]. Research on   [71]  DIAZ-MORALES O,  FERRUS-SUSPEDRA  D, KOPER  M T M.
                 Chemical Intermediates, 2017, 43: 4997-5009.      The importance of nickel oxyhydroxide deprotonation on its activity
            [59]  LIU G G,  WANG  T, ZHANG H B,  et al. Nature-inspired   towards electrochemical water oxidation[J]. Chemical Science, 2016,
                 environmental   ″phosphorylation″  boosts  photocatalytic  H 2   7: 2639-2645.
                 production over carbon nitride nanosheets under visible-light   [72] NIHONYANAGI  S,  YAMAGUCHI  S, TAHARA T. Counterion
                 irradiation[J]. Angewandte Chemie International Edition,  2015, 54:   effect on interfacial water at charged interfaces and its relevance to
                 13561-13565.                                      the hofmeister series[J]. Journal of the American Chemical Society ,
            [60]  SHEN R C, XIE J, ZHANG H  D,  et al. Enhanced solar fuel H 2   2014, 136: 6155-6158.
                 generation over  g-C 3N 4 nanosheet photocatalysts by the synergetic   [73]  CHEN X T, MCCRUM I T, SCHWARZ K A, et al. Co-adsorption of
                 effect of noble metal-free Co 2P cocatalyst and the environmental   cations as the cause of the apparent ph dependence of hydrogen
                 phosphorylation strategy[J]. ACS Sustainable Chemistry &   adsorption  on a stepped  platinum single-crystal electrode[J].
                 Engineering, 2018, 6: 816-826.                    Angewandte Chemie International Edition, 2017, 56: 15025-15029.
            [61]  KANAN M W, NOCERA D G.  In situ  formation of an oxygen-   [74]  GUO S, LI J L, ZHANG B S,  et al. Interfacial thermodynamics-
                                                       2+
                 evolving catalyst in neutral water containing phosphate and Co [J].   inspired electrolyte strategy to regulate output voltage and energy
                 Science, 2008, 321: 1072-1075.                    density of battery chemistry[J]. Science Bulletin, 2022, 67: 626-635.
            [62]  MEGAN N J, JUNG O, LAMOTTE  H C,  et al. Donor-dependent   [75]  YU G S, WANG N. Gas-liquid-solid interface enhanced photocatalytic
                 promotion of interfacial proton-coupled electron transfer in aqueous   reaction in a  microfluidic reactor for water treatment[J]. Applied
                 electrocatalysis[J]. ACS Catalysis, 2019, 9: 3737-3743.   Catalysis A: General, 2020, 591: 117410.
            [63]  LEE D K, CHOI K S. Enhancing long-term photostability of BiVO 4   [76]  MOTEGH M, CEN J J, APPEL P W, et al. Diffusion limitations in
                 photoanodes for solar water splitting by tuning electrolyte   stagnant  photocatalytic reactors[J]. Chemical  Engineering Journal,
                 composition[J]. Nature Energy, 2018, 3: 53-60.    2014, 247: 314-319.
            [64]  MI Q  X, CORIDAN R H, BRUNSCHWIG  B  S,  et al.   [77]  MODESTINO M  A, HASHEMI S M H, HAUSSENER S. Mass
                 Photoelectrochemical oxidation  of anions  by WO 3 in aqueous and   transport aspects of electrochemical solar-hydrogen generation[J].
                 nonaqueous electrolytes[J]. Energy & Environmental Science, 2013,   Energy & Environmental Science, 2016, 9: 1533-1551.
                 6: 2646-2653.                                 [78]  SINGH M R, KWON  Y, LUM  Y,  et al. Hydrolysis of  electrolyte
            [65]  MEGAN N J, SURENDRANATH Y. Donor-dependent kinetics of   cations enhances the electrochemical reduction of CO 2 over Ag and
                 interfacial proton-coupled electron  transfer[J]. Journal of  the   Cu[J]. Journal of the American Chemical Society , 2016, 138: 13006-
                 American Chemical Society, 2016, 138: 3228-3234.   13012.
            [66]  WAEGELE M M,  GUNATHUNGE C M,  LI J,  et al. How cations   [79]  SHINAGAWA T, TAKANABE K. Electrocatalytic hydrogen evolution
                 affect the electric double layer and  the rates and  selectivity of   under densely buffered neutral  pH conditions[J]. The Journal of
                 electrocatalytic processes[J]. The Journal of Chemical Physics, 2019,   Physical Chemistry C, 2015, 119: 20453-20458.
                 151: 160902.                                  [80]  MODESTINO M  A, HASHEMI S M H, HAUSSENER S. Mass
            [67]  ROGER P. The  electrical double layer: Recent experimental and   transport aspects of electrochemical solar-hydrogen generation[J].
                 theoretical developments[J]. Chemical Reviews, 1990, 90: 813-826.   Energy & Environmental Science, 2016, 9: 1533-1551.
            [68]  HERASYMENKO I, SLENDYK Z. Hydrogen evolution overpotential   [81]  NAITO T, SHINAGAWA T, NISHIMOTO T,  et al. Gas crossover
                 and adsorption of ions[J]. Physical Chemistry A, 1930, 149: 123-139.   regulation by porosity-controlled glass sheet achieves pure hydrogen
            [69]  DING C M, ZHOU X, SHI J Y, et al. Abnormal effects of cations   production by buffered water electrolysis at neutral pH[J].
                          +
                     +
                  +
                 (Li , Na , and K ) on photoelectrochemical and electrocatalytic water   ChemSusChem, 2022, 15: e202102294.
   36   37   38   39   40   41   42   43   44   45   46