Page 41 - 《精细化工》2022年第10期
P. 41
第 10 期 王瑞雪,等: 水分解制氢中的电解液调控机制 ·1975·
[57] ZHANG J, SHENG W C, ZHUANG Z B, et al. Universal splitting[J]. The Journal of Physical Chemistry B, 2015, 119: 3560-
dependence of hydrogen oxidation and evolution reaction activity of 3566.
platinum-group metals on pH and hydrogen binding energy[J]. [70] SUBBARAMAN R, TRIPKOVIC D, STRMCNIK D, et al. Enhancing
+
Science Advances, 2016, 2(3): e1501602. hydrogen evolution activity in water splitting by tailoring Li -
[58] ZHU Q, DUAN R, JI H W, et al. Interfacial proton-coupled electron Ni(OH) 2-Pt interfaces[J]. Science, 2011, 334: 1256-1260.
transfer in metal oxide semiconductor photocatalysis[J]. Research on [71] DIAZ-MORALES O, FERRUS-SUSPEDRA D, KOPER M T M.
Chemical Intermediates, 2017, 43: 4997-5009. The importance of nickel oxyhydroxide deprotonation on its activity
[59] LIU G G, WANG T, ZHANG H B, et al. Nature-inspired towards electrochemical water oxidation[J]. Chemical Science, 2016,
environmental ″phosphorylation″ boosts photocatalytic H 2 7: 2639-2645.
production over carbon nitride nanosheets under visible-light [72] NIHONYANAGI S, YAMAGUCHI S, TAHARA T. Counterion
irradiation[J]. Angewandte Chemie International Edition, 2015, 54: effect on interfacial water at charged interfaces and its relevance to
13561-13565. the hofmeister series[J]. Journal of the American Chemical Society ,
[60] SHEN R C, XIE J, ZHANG H D, et al. Enhanced solar fuel H 2 2014, 136: 6155-6158.
generation over g-C 3N 4 nanosheet photocatalysts by the synergetic [73] CHEN X T, MCCRUM I T, SCHWARZ K A, et al. Co-adsorption of
effect of noble metal-free Co 2P cocatalyst and the environmental cations as the cause of the apparent ph dependence of hydrogen
phosphorylation strategy[J]. ACS Sustainable Chemistry & adsorption on a stepped platinum single-crystal electrode[J].
Engineering, 2018, 6: 816-826. Angewandte Chemie International Edition, 2017, 56: 15025-15029.
[61] KANAN M W, NOCERA D G. In situ formation of an oxygen- [74] GUO S, LI J L, ZHANG B S, et al. Interfacial thermodynamics-
2+
evolving catalyst in neutral water containing phosphate and Co [J]. inspired electrolyte strategy to regulate output voltage and energy
Science, 2008, 321: 1072-1075. density of battery chemistry[J]. Science Bulletin, 2022, 67: 626-635.
[62] MEGAN N J, JUNG O, LAMOTTE H C, et al. Donor-dependent [75] YU G S, WANG N. Gas-liquid-solid interface enhanced photocatalytic
promotion of interfacial proton-coupled electron transfer in aqueous reaction in a microfluidic reactor for water treatment[J]. Applied
electrocatalysis[J]. ACS Catalysis, 2019, 9: 3737-3743. Catalysis A: General, 2020, 591: 117410.
[63] LEE D K, CHOI K S. Enhancing long-term photostability of BiVO 4 [76] MOTEGH M, CEN J J, APPEL P W, et al. Diffusion limitations in
photoanodes for solar water splitting by tuning electrolyte stagnant photocatalytic reactors[J]. Chemical Engineering Journal,
composition[J]. Nature Energy, 2018, 3: 53-60. 2014, 247: 314-319.
[64] MI Q X, CORIDAN R H, BRUNSCHWIG B S, et al. [77] MODESTINO M A, HASHEMI S M H, HAUSSENER S. Mass
Photoelectrochemical oxidation of anions by WO 3 in aqueous and transport aspects of electrochemical solar-hydrogen generation[J].
nonaqueous electrolytes[J]. Energy & Environmental Science, 2013, Energy & Environmental Science, 2016, 9: 1533-1551.
6: 2646-2653. [78] SINGH M R, KWON Y, LUM Y, et al. Hydrolysis of electrolyte
[65] MEGAN N J, SURENDRANATH Y. Donor-dependent kinetics of cations enhances the electrochemical reduction of CO 2 over Ag and
interfacial proton-coupled electron transfer[J]. Journal of the Cu[J]. Journal of the American Chemical Society , 2016, 138: 13006-
American Chemical Society, 2016, 138: 3228-3234. 13012.
[66] WAEGELE M M, GUNATHUNGE C M, LI J, et al. How cations [79] SHINAGAWA T, TAKANABE K. Electrocatalytic hydrogen evolution
affect the electric double layer and the rates and selectivity of under densely buffered neutral pH conditions[J]. The Journal of
electrocatalytic processes[J]. The Journal of Chemical Physics, 2019, Physical Chemistry C, 2015, 119: 20453-20458.
151: 160902. [80] MODESTINO M A, HASHEMI S M H, HAUSSENER S. Mass
[67] ROGER P. The electrical double layer: Recent experimental and transport aspects of electrochemical solar-hydrogen generation[J].
theoretical developments[J]. Chemical Reviews, 1990, 90: 813-826. Energy & Environmental Science, 2016, 9: 1533-1551.
[68] HERASYMENKO I, SLENDYK Z. Hydrogen evolution overpotential [81] NAITO T, SHINAGAWA T, NISHIMOTO T, et al. Gas crossover
and adsorption of ions[J]. Physical Chemistry A, 1930, 149: 123-139. regulation by porosity-controlled glass sheet achieves pure hydrogen
[69] DING C M, ZHOU X, SHI J Y, et al. Abnormal effects of cations production by buffered water electrolysis at neutral pH[J].
+
+
+
(Li , Na , and K ) on photoelectrochemical and electrocatalytic water ChemSusChem, 2022, 15: e202102294.