Page 40 - 《精细化工》2022年第10期
P. 40

·1974·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 Pt, Ni, and Ni-Mo electrocatalysts  for hydrogen evolution on   724-731.
                 crystalline Si electrodes[J]. Energy & Environmental Science, 2011,   [39]  SHINAGAWA T, GARCIA-ESPARZA A T, TAKANABE K. Insight
                 4: 3573-3583.                                     on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis
            [21]  LANDMAN  A,  HALABI R, DIAS P,  et al. Decoupled   for energy conversion[J]. Scientific Reports, 2015, 5: 13801.
                 photoelectrochemical water splitting system for centralized hydrogen   [40]  RAO  R R, HUANG B T, KATAYAMA Y,  et al. pH- and cation-
                 production[J]. Joule, 2020, 4: 448-471.           dependent water oxidation  on rutile  RuO 2(110)[J]. The Journal  of
            [22]  AGER J W, SHANER M R, WALCZAK K A, et al. Experimental   Physical Chemistry C, 2021, 125: 8195-8207.
                 demonstrations of  spontaneous, solar-driven photoelectrochemical   [41]  FU L H, YANG F L, CHENG G Z, et al. Ultrathin Ir nanowires as
                 water splitting[J]. Energy & Environmental Science, 2015, 8: 2811-   high-performance  electrocatalysts for efficient water splitting in
                 2824.                                             acidic media[J]. Nanoscale, 2018, 10: 1892-1897.
            [23]  DING C M, SHI J Y, WANG Z L, et al. Photoelectrocatalytic water   [42]  SHAN J Q, LING T, DAVEY K, et al. Transition-metal-doped ruir
                 splitting: Significance of cocatalysts,  electrolyte, and interfaces[J].   bifunctional  nanocrystals for  overall water splitting  in acidic
                 ACS Catalysis, 2017, 7: 675-688.                  environments[J]. Advanced Materials, 2019, 31: 1900510.
            [24]  GUO L J (郭丽君), LI R (李瑞), LIU J X (刘建新), et al. Study on   [43]  CAO D, WANG J Y, ZHANG H, et al. Growth of IrCu nanoislands
                 hydrogen evolution efficiency of  semiconductor  photocatalysts for   with rich IrCu/Ir interfaces enables highly efficient overall water
                 solar water splitting[J]. Progress in  Chemistry (化学进展), 2020,   splitting in non-acidic electrolytes[J]. Chemical Engineering Journal,
                 32(1): 46-54.                                     2021, 416: 129128.
            [25]  CHEN K  L (陈克龙), HUANG J H (黄建花). g-C 3N 4-CdS-NiS 2   [44]  ZHANG Z H, LI C  B, HUANG  H R,  et al. High-density nickel
                 composite nanotube: Synthesis and its photocatalytic activity for H 2   phosphide nanoparticles loaded reduced graphene oxide on nickel
                 generation under visible light[J]. CIESC Journal (化工学报), 2020,   foam for enhanced alkaline and neutral water splitting[J].
                 71(1): 397-408.                                   Electrochimica Acta, 2020, 362: 137172.
            [26]  GAO Y X, ZHANG S H, BU X B, et al. Surface defect engineering   [45]  CAO X M, FAN R L, ZHOU J,  et al. NiMoFe/Cu nanowire
                 via acid treatment improving photoelectrocatalysis of β-In 2S 3 nanoplates   core-shell catalysts for high-performance overall water splitting in
                 for water splitting[J]. Catalysis Today, 2019, 327: 271-278.   neutral electrolytes[J]. Chemical Communications, 2022, 58:
            [27]  HOU P, LI D,  YANG N L,  et al. Delicate  control on the shell   1569-1572.
                 structure of hollow spheres enables tunable mass transport in water   [46]  ZHENG T T, SHANG C  Y, HE  Z  H,  et al. Intercalated iridium
                 splitting[J]. Angewandte Chemie International Edition,  2021, 60:   diselenide electrocatalysts for efficient pH-universal water splitting[J].
                 6926-6931.                                        Angewandte Chemie International Edition, 2019, 58: 14764-14769.
            [28]  SHINAGAWA T, GARCIA-ESPARZA A T,  TAKANABE  K.   [47]  ZHAO Y, BAI J,  WU X R, et al. Atomically ultrathin RhCo alloy
                 Mechanistic switching  by hydronium ion activity for  hydrogen   nanosheet aggregates for efficient water electrolysis in  broad  pH
                 evolution and oxidation over polycrystalline platinum disk and   range[J]. Journal of Materials Chemistry A, 2019, 7: 16437-16446.
                 platinum/carbon electrodes[J]. ChemElectroChem, 2014, 1: 1497-1507.   [48]  SHINAGAWA T, NG M T K,  TAKANABE  K.  Electrolyte
            [29]  GRIGIONI I, CORTI A,  DOZZI M V,  et al. Photoactivity and   engineering towards efficient water splitting at  mild pH[J].
                 stability of WO 3/BiVO 4 photoanodes: Effects of  the contact   ChemSusChem, 2017, 10: 4155-4162.
                 electrolyte and of Ni/Fe oxyhydroxide protection[J]. The Journal of   [49]  OBATA K, STEGENBURGA  L, TAKANABE K.  Maximizing
                 Physical Chemistry C, 2018, 122: 13969-13978.     hydrogen evolution performance on Pt in buffered solutions: Mass
            [30]  LI J H (李金翰),  CHENG F Y (程方益). Electrolyte tailoring  for   transfer constrains of H 2 and buffer ions[J]. The Journal of Physical
                 electrocatalytic reduction of stable  molecules[J]. Journal of   Chemistry C, 2019, 123: 21554-21563.
                 Electrochemistry (电化学), 2020, 26(4): 474-485.   [50]  SHINAGAWA T,  TAKANABE  K. Electrolyte engineering toward
            [31]  TAN J F,  LIU J  P. Electrolyte engineering toward high-voltage   efficient hydrogen production electrocatalysis with oxygen-crossover
                 aqueous energy storage devices[J]. Energy & Environmental Materials,   regulation under densely buffered near-neutral pH conditions[J]. The
                 2021, 4: 302-306.                                 Journal of Physical Chemistry C, 2016, 120: 1785-1794.
            [32]  SHINAGAWA T, TAKANABE K. Towards versatile and sustainable   [51]  GE  R X, MA  M, REN X,  et al. NiCo 2O 4@Ni-Co-Ci core-shell
                 hydrogen production through electrocatalytic water splitting:   nanowires array as an efficient electrocatalyst for water oxidation at
                 Electrolyte engineering[J]. ChemSusChem, 2017, 10: 1318-1336.   near-neutral pH[J]. Chem Commun, 2017, 53: 7812-7815.
            [33]  LEWIS N S. Progress in understanding electron-transfer reactions at   [52]  GE R X, REN  X,  QU F L,  et al. Three-dimensional nickel-borate
                 semiconductor/liquid interfaces[J]. The Journal of Physical Chemistry   nanosheets array for efficient oxygen evolution at near-neutral pH[J].
                 B, 1998, 102: 4843-4855.                          Chemistry-A European Journal, 2017, 23: 6959-6963.
            [34]  ZHANG W R, YAN D  H, APPAVOO K,  et al. Unravelling   [53]  MA M, QU F  L, JI X  Q,  et al. Bimetallic  nickel-substituted
                 photocarrier  dynamics beyond the space charge region  for   cobalt-borate nanowire array: An earth-abundant water oxidation
                 photoelectrochemical water splitting[J]. Chemistry of  Materials,   electrocatalyst with superior activity and durability at near neutral
                 2017, 29: 4036-4043.                              pH[J]. Small, 2017, 13, 1700394.
            [35]  ZHANG Y C, ZHANG H N, JI H W, et al. Pivotal role and regulation   [54]  ZHANG B  W,  LUI Y H, ZHOU  L,  et al. An alkaline electro-
                 of proton transfer  in water oxidation on  hematite photoanodes[J].   activated  Fe-Ni  phosphide  nanoparticle-stack  array  for
                 Journal of the American Chemical Society, 2016, 138: 2705-2711.   high-performance  oxygen evolution  under alkaline and neutral
            [36]  KOPER  M  T M.  Theory of multiple proton-electron transfer   conditions[J]. Journal of Materials Chemistry  A, 2017,  5: 13329-
                 reactions and its implications  for electrocatalysis[J]. Chemical   13335.
                 Science, 2013, 4: 2710-2723.                  [55]  COLIC V, POHL  M D, SCIESZKA D,  et al. Influence of the
            [37]  LEDEZMA-YANEZ I, WALLACE W D Z, SEBASTIÁN-PASCUAL   electrolyte composition on the activity and selectivity of
                 P, et al. Interfacial water reorganization as a pH-dependent descriptor   electrocatalytic centers[J]. Catalysis Today, 2016, 262: 24-35.
                 of the hydrogen evolution  rate on platinum electrodes[J]. Nature   [56]  KAMAT G A, ZAMORA ZELEDÓN J A, GUNASOORIYA G T K
                 Energy, 2017, 2: 17031.                           K, et al. Acid anion electrolyte effects on platinum for oxygen and
            [38]  CHEN C C, SHI T, CHANG W,  et al. Essential roles  of proton   hydrogen electrocatalysis[J]. Communications Chemistry,  2022, 5:
                 transfer in photocatalytic redox reactions[J]. ChemCatChem, 2015, 7:   20.
   35   36   37   38   39   40   41   42   43   44   45